Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (1): 299-310.doi: 10.19799/j.cnki.2095-4239.2023.0613
• Energy Storage Materials and Devices • Previous Articles Next Articles
Kun ZENG1(), Xiaoyan ZHENG1, Huiling GONG2, Bo ZOU1, Kai CHEN1, Zhongna YAN1()
Received:
2023-09-08
Revised:
2023-10-16
Online:
2024-01-05
Published:
2024-01-22
Contact:
Zhongna YAN
E-mail:1026219181@qq.com;yanzn@csust.edu.cn
CLC Number:
Kun ZENG, Xiaoyan ZHENG, Huiling GONG, Bo ZOU, Kai CHEN, Zhongna YAN. Research progress in liquid metal batteries based on lithium negative electrodes[J]. Energy Storage Science and Technology, 2024, 13(1): 299-310.
Table 1
Performance parameters related to mixed molten salt electrolytes"
电极 | 电解质组成 | 比例(摩尔比) | 熔点/℃ | 密度/(g/cm3) | 电导率/(S/cm) | 参考文献 |
---|---|---|---|---|---|---|
Li | LiCl-KCl | 41∶59 | 353 | [ | ||
LiCl-LiF | 70∶30 | 501 | 1.8 | [ | ||
LiF-LiCl-LiI | 20∶50∶30 | 430 | [ | |||
LiF-LiCl-LiBr | 22∶31∶47 | 443 | 2.7 | 3.0 | [ | |
LiBr-KBr | 60∶40 | 320 | [ | |||
LiF-LiBr-KBr | 3∶63∶34 | 312 | [ | |||
Na | NaF-NaCl-NaI | 15∶32∶53 | 530 | 2.54 | 1.7~2.0 | [ |
NaOH-NaI | 80∶20 | 220 | [ | |||
Ca | LiCl-NaCl-CaCl2 | 38∶27∶35 | 450 | 1.85 | 2.6 | [ |
LiCl-NaCl-CaCl2-BaCl2 | 29∶20∶35∶16 | 390 | 2.24 | 1.8 | [ | |
Zn | ZnCl2 | 100 | 292 | [ | ||
ZnCl2-KCl | 50∶50 | 230 | [ |
1 | 黄雨涵, 丁涛, 李雨婷, 等. 碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J]. 中国电机工程学报, 2021, 41(S1): 28-51. |
HUANG Y H, DING T, LI Y T, et al. Decarbonization technologies and inspirations for the development of novel power systems in the context of carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(S1): 28-51. | |
2 | 钱建国, 孔飘红, 章晓锘. 双碳背景下新型电力系统储能设计与运行[J]. 储能科学与技术, 2022, 11(12): 4102-4103. |
QIAN J G, KONG P H, ZHANG X N. Energy storage design and operation of new power system under the background of double carbon[J]. Energy Storage Science and Technology, 2022, 11(12): 4102-4103. | |
3 | 张宏霞, 张衍杰, 马茜, 等. "双碳"目标下新能源产业发展趋势[J]. 储能科学与技术, 2022, 11(5): 1677-1678. |
ZHANG H X, ZHANG Y J, MA (Q /X), et al. Development trend of new energy industry under the goal of "double carbon"[J]. Energy Storage Science and Technology, 2022, 11(5): 1677-1678. | |
4 | FAISAL M, HANNAN M A, KER P J, et al. Review of energy storage system technologies in microgrid applications: Issues and challenges[J]. IEEE Access, 2018, 6: 35143-35164. |
5 | 杨水丽, 来小康, 丁涛, 等. 新型储能技术在弹性电网中的应用与展望[J]. 储能科学与技术, 2023, 12(2): 515-528. |
YANG S L, LAI X K, DING T, et al. Application and prospect of new energy storage technologies in resilient power systems[J]. Energy Storage Science and Technology, 2023, 12(2): 515-528. | |
6 | 申洪, 周勤勇, 刘耀, 等. 碳中和背景下全球能源互联网构建的关键技术及展望[J]. 发电技术, 2021, 42(1): 8-19. |
SHEN H, ZHOU Q Y, LIU Y, et al. Key technologies and prospects for the construction of global energy Internet under the background of carbon neutral[J]. Power Generation Technology, 2021, 42(1): 8-19. | |
7 | 许守平, 李相俊, 惠东. 大规模储能系统发展现状及示范应用综述[J]. 电网与清洁能源, 2013, 29(8): 94-100, 108. |
XU S P, LI X J, HUI D. A survey of the development and demonstration application of large-scale energy storage[J]. Power System and Clean Energy, 2013, 29(8): 94-100, 108. | |
8 | 蒋凯, 李浩秒, 李威, 等. 几类面向电网的储能电池介绍[J]. 电力系统自动化, 2013, 37(1): 47-53. |
JIANG K, LI H M, LI W, et al. On several battery technologies for power grids[J]. Automation of Electric Power Systems, 2013, 37(1): 47-53. | |
9 | YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
10 | ROBERTS B P, SANDBERG C. The role of energy storage in development of smart grids[J]. Proceedings of the IEEE, 2011, 99(6): 1139-1144. |
11 | 林靖, 王晟, 李浩秒, 等. 液态金属电池的温度特性[J]. 中国电机工程学报, 2021, 41(4): 1458-1468, 1551. |
LIN J, WANG S, LI H M, et al. Temperature characteristics of liquid metal batteries[J]. Proceedings of the CSEE, 2021, 41(4): 1458-1468, 1551. | |
12 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
13 | TIAN Y H, ZHANG S Q. The renaissance of liquid metal batteries[J]. Matter, 2020, 3(6): 1824-1826. |
14 | MENG J W, ZHANG Y, ZHOU X J, et al. Li2CO3-affiliative mechanism for air-accessible interface engineering of garnet electrolyte via facile liquid metal painting[J]. Nature Communications, 2020, 11: 3716. |
15 | MENG J W, LI C L. Planting CuGa2 seeds assisted with liquid metal for selective wrapping deposition of lithium[J]. Energy Storage Materials, 2021, 37: 466-475. |
16 | ZHANG Y, MENG J W, CHEN K Y, et al. Garnet-based solid-state lithium fluoride conversion batteries benefiting from eutectic interlayer of superior wettability[J]. ACS Energy Letters, 2020, 5(4): 1167-1176. |
17 | LIU Y Y, MENG J W, LEI M, et al. Alloyable viscous fluid for interface welding of garnet electrolyte to enable highly reversible fluoride conversion solid state batteries[J]. Advanced Functional Materials, 2023, 33(4): 2208013. |
18 | WU S, ZHANG X, WANG R Z, et al. Progress and perspectives of liquid metal batteries[J]. Energy Storage Materials, 2023, 57: 205-227. |
19 | 刘奇, 刘双宇, 王博, 等. 液态金属电池研究进展[J]. 电源技术, 2019, 43(12): 2053-2057. |
LIU Q, LIU S Y, WANG B, et al. Research progress in liquid metal batteries[J]. Chinese Journal of Power Sources, 2019, 43(12): 2053-2057. | |
20 | KIM H, BOYSEN D A, NEWHOUSE J M, et al. Liquid metal batteries: Past, present, and future[J]. Chemical Reviews, 2013, 113(3): 2075-2099. |
21 | LI H M, YIN H Y, WANG K L, et al. Liquid metal electrodes for energy storage batteries[J]. Advanced Energy Materials, 2016, 6(14): 2075-2099. |
22 | 黎朝晖, 朱方方, 李浩秒, 等. 液态金属电池研究进展[J]. 储能科学与技术, 2017, 6(5): 981-989. |
LI Z H, ZHU F F, LI H M, et al. Research progresses of liquid metal batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 981-989. | |
23 | 孟潇, 张伟. 合金电极液态金属电池研究进展[J]. 电源技术, 2022, 46(5): 480-483. |
MENG X, ZHANG W. Research progress of liquid metal batteries with alloy electrodes[J]. Chinese Journal of Power Sources, 2022, 46(5): 480-483. | |
24 | KANE M M, NEWHOUSE J M, SADOWAY D R. Electrochemical determination of the thermodynamic properties of lithium-antimony alloys[J]. Journal of the Electrochemical Society, 2014, 162(3): A421-A425. |
25 | NING X H, PHADKE S, CHUNG B, et al. Self-healing Li-Bi liquid metal battery for grid-scale energy storage[J]. Journal of Power Sources, 2015, 275: 370-376. |
26 | WANG K L, JIANG K, CHUNG B, et al. Lithium-antimony-lead liquid metal battery for grid-level energy storage[J]. Nature, 2014, 514(7522): 348-350. |
27 | NEWHOUSE J M. Modeling the operating voltage of liquid metal battery cells[D]. Massachusetts Institute of Technology, 2014. |
28 | MASSET P J, GUIDOTTI R A. Thermal activated ("thermal") battery technology[J]. Journal of Power Sources, 2008, 178(1): 456-466. |
29 | CAIRNS E, CROUTHAMEL C, FISCHER A K, et al. Galvanic cells with fused-salt electrolytes[R]. Argonne National Lab., Ⅲ., 1967. |
30 | SPATOCCO B L, OUCHI T, LAMBOTTE G, et al. Low-temperature molten salt electrolytes for membrane-free sodium metal batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): A2729-A2736. |
31 | KIM H, BOYSEN D A, OUCHI T, et al. Calcium-bismuth electrodes for large-scale energy storage (liquid metal batteries)[J]. Journal of Power Sources, 2013, 241: 239-248. |
32 | OUCHI T, KIM H, NING X H, et al. Calcium-antimony alloys as electrodes for liquid metal batteries[J]. Journal of the Electrochemical Society, 2014, 161(12): A1898-A1904. |
33 | BRADWELL D J. Liquid metal batteries: ambipolar electrolysis and alkaline earth electroalloying cells[D]. Massachusetts Institute of Technology, 2011. |
34 | HOLUBOWITCH N E, MANEK S E, LANDON J, et al. Cathode candidates for zinc-based thermal-electrochemical energy storage[J]. International Journal of Energy Research, 2016, 40(3): 393-399. |
35 | HOLUBOWITCH N E, MANEK S E, LANDON J, et al. Molten zinc alloys for lower temperature, lower cost liquid metal batteries[J]. Advanced Materials Technologies, 2016, 1(3): 1600035. |
36 | HOLUBOWITCH N, MANEK S, LANDON J, et al. Zn-Sn electrochemical cells with molten salt eutectic electrolytes and their potential for energy storage applications[J]. ECS Transactions, 2014, 64(4): 439-452. |
37 | MATSUNAGA S, ISHIGURO T, TAMAKI S. Thermodynamic properties of liquid Na-Pb alloys[J]. Journal of Physics F: Metal Physics, 1983, 13(3): 587-595. |
38 | NEALE F E, CUSACK N E. Thermodynamic properties of liquid sodium-caesium alloys[J]. Journal of Physics F: Metal Physics, 1982, 12(12): 2839-2850. |
39 | WEAVER R D, SMITH S W, WILLMANN N L. The Sodium∣Tin liquid-metal cell[J]. Journal of the Electrochemical Society, 1962, 109(8): 653. |
40 | BRADWELL D J, KIM H, SIRK A H C, et al. Magnesium-antimony liquid metal battery for stationary energy storage[J]. Journal of the American Chemical Society, 2012, 134(4): 1895-1897. |
41 | LEUNG P, HECK S C, AMIETSZAJEW T, et al. Performance and polarization studies of the magnesium-antimony liquid metal battery with the use of in-situ reference electrode[J]. RSC Advances, 2015, 5(101): 83096-83105. |
42 | THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation-Approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7): 7854-7863. |
43 | UKSHE E A, BUKUN N G. The dissolution of metals in fused halides[J]. Russian Chemical Reviews, 1961, 30(2): 90-107. |
44 | DWORKIN A S, BRONSTEIN H R, BREDIG M A. Miscibility of metals with salts. vi. lithium-lithium halide systems1[J]. The Journal of Physical Chemistry, 1962, 66(3): 572-573. |
45 | LI H M, WANG K L, ZHOU H, et al. Tellurium-tin based electrodes enabling liquid metal batteries for high specific energy storage applications[J]. Energy Storage Materials, 2018, 14: 267-271. |
46 | WEPPNER W, HUGGINS R A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb[J]. Journal of the Electrochemical Society, 1977, 124(10): 1569-1578. |
47 | XIE H L, CHEN Z Y, CHU P, et al. An elaborate low-temperature electrolyte design towards high-performance liquid metal battery[J]. Journal of Power Sources, 2022, 536: 231527. |
48 | YAN S, ZHOU X B, LI H M, et al. Utilizing in situ alloying reaction to achieve the self-healing, high energy density and cost-effective Li||Sb liquid metal battery[J]. Journal of Power Sources, 2021, 514: 230578. |
49 | LI H M, WANG K L, CHENG S J, et al. High performance liquid metal battery with environmentally friendly antimony-tin positive electrode[J]. ACS Applied Materials & Interfaces, 2016, 8(20): 12830-12835. |
50 | ZHAO W, LI P, LIU Z W, et al. High-performance antimony-bismuth-tin positive electrode for liquid metal battery[J]. Chemistry of Materials, 2018, 30(24): 8739-8746. |
51 | CUI K X, ZHAO W, LI S W, et al. Low-temperature and high-energy-density Li-based liquid metal batteries based on LiCl-KCl molten salt electrolyte[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(5): 1871-1879. |
52 | XIE H L, CHU P, YANG M N, et al. A novel Sb-Zn electrode with ingenious discharge mechanism towards high-energy-density and kinetically accelerated liquid metal battery[J]. Energy Storage Materials, 2023, 54: 20-29. |
53 | DAI T, ZHAO Y, NING X H, et al. Capacity extended bismuth-antimony cathode for high-performance liquid metal battery[J]. Journal of Power Sources, 2018, 381: 38-45. |
54 | KIM J, SHIN D, JUNG Y, et al. LiCl-LiI molten salt electrolyte with bismuth-lead positive electrode for liquid metal battery[J]. Journal of Power Sources, 2018, 377: 87-92. |
55 | 李浩秒, 周浩, 王康丽, 等. 液态金属电极的电化学储能应用[J]. 电化学, 2020, 26(5): 663-682. |
LI H M, ZHOU H, WANG K L, et al. Liquid metal electrodes for electrochemical energy storage technologies[J]. Journal of Electrochemistry, 2020, 26(5): 663-682. | |
56 | ZHANG J, HUANG J, LIU R X, et al. Corrosion behaviour of AlN ceramics in LiF-LiCl-LiBr-Li molten salt at 500 ℃[J]. Corrosion Science, 2021, 190: 109672. |
57 | LI B R, WEN B, CHEN H Z, et al. Corrosion behaviour and related mechanism of lithium vapour on aluminium nitride ceramic[J]. Corrosion Science, 2021, 178: 109058. |
58 | MASSET P. Iodide-based electrolytes: A promising alternative for thermal batteries[J]. Journal of Power Sources, 2006, 160(1): 688-697. |
59 | TORTORELLI P F, CHOPRA O K. Corrosion and compatibility considerations of liquid metals for fusion reactor applications[J]. Journal of Nuclear Materials, 1981, 103: 621-632. |
60 | MENG X C, ZUO G Z, REN J, et al. Study of the corrosion behaviors of 304 austenite stainless steel specimens exposed to static liquid lithium at 600 K[J]. Journal of Nuclear Materials, 2016, 480: 25-31. |
61 | 蒋凯, 黎朝晖, 王康丽, 等. 耐腐蚀密封绝缘装置及中高温储能电池: CN205960043U[P]. 2017-02-15. |
JIANG K, LI Z H, WANG K L, et al. Corrosion-resistant sealed insulation device and well high temperature energy storage battery: CN205960043U[P]. 2017-02-15.. | |
62 | GUO Z L, ZHANG Y, HE Y L, et al. Thermal power characteristics of a liquid metal battery[J]. Energy Reports, 2021, 7: 1221-1230. |
63 | GUO Z L, XU C, LI W, et al. Numerical study on the thermal management system of a liquid metal battery module[J]. Journal of Power Sources, 2018, 392: 181-192. |
64 | ZHANG Y, WANG S, GUO Z L, et al. A multi-input single-output thermal management system design for liquid metal batteries[J]. Applied Thermal Engineering, 2023, 219: 119575. |
[1] | Chu ZHANG, Dongcai CHEN, Xiangping CHEN, Yongxiang CAI. Economic benefit analysis of optimal allocation of energy storage in multiple application scenarios [J]. Energy Storage Science and Technology, 2024, 13(6): 2078-2088. |
[2] | Su YAN, Fangfang ZHONG, Junwei LIU, Mei DING, Chuankun JIA. Key materials and advanced characterization of high-energy-density flow battery [J]. Energy Storage Science and Technology, 2024, 13(1): 143-156. |
[3] | Yimei OUYANG, Mengmeng ZHAO, Guiming ZHONG, Zhangquan PENG. Nuclear magnetic resonance spectroscopy for probing interfaces in electrochemical energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(1): 157-166. |
[4] | Libo ZHANG, Gege WANG. Topic identification, evolution, and risk analysis of electrochemical energy storage battery technology [J]. Energy Storage Science and Technology, 2023, 12(8): 2680-2692. |
[5] | Guangjin ZHAO, Bowen LI, Yuxia HU, Ruifeng DONG, Fangfang WANG. Overview of the echelon utilization technology and engineering application of retired power batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2319-2332. |
[6] | Zhixiang CHENG, Wei CAO, Bo HU, Yunfang CHENG, Xin LI, Lihua JIANG, Kaiqiang JIN, Qingsong WANG. Thermal runaway and explosion propagation characteristics of large lithium iron phosphate battery for energy storage station [J]. Energy Storage Science and Technology, 2023, 12(3): 923-933. |
[7] | Xuanliang ZHANG, Ting HE, Wenlong ZHU, Shen WANG, Jianhua ZENG, Quan XU, Yingchun NIU. A SOH estimation model for energy storage batteries based on multiple cycle features [J]. Energy Storage Science and Technology, 2023, 12(11): 3488-3498. |
[8] | Lexian DONG, Qun ZHENG, Yue HUANG, Zhipeng TIAN, Jianping LIU, Chao WANG, Bo LIANG, Libin LEI. Research progress on cutting-edge technology of tubular solid oxide fuel cells [J]. Energy Storage Science and Technology, 2023, 12(1): 131-138. |
[9] | Yang LIU, Weijun TENG, Qingfa GU, Xin SUN, Yuliang TAN, Zhijin FANG, Jianlin LI. Scaled-up diversified electrochemical energy storage LCOE and its economic analysis [J]. Energy Storage Science and Technology, 2023, 12(1): 312-318. |
[10] | Hong LI, Qiang ZHANG. A review of energy storage science and technology projects supported by national key R&D program [J]. Energy Storage Science and Technology, 2022, 11(9): 2691-2701. |
[11] | Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming LIU, Min YAN, Shun TANG, Yuancheng CAO, Shijie CHENG, Weixin ZHANG. Patent analysis of fire-protection technology of lithium-ion energy storage system [J]. Energy Storage Science and Technology, 2022, 11(8): 2664-2670. |
[12] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[13] | Siqi SHI, Zhangwei TU, Xinxin ZOU, Shiyu SUN, Zhengwei YANG, Yue LIU. Applying data-driven machine learning to studying electrochemical energy storage materials [J]. Energy Storage Science and Technology, 2022, 11(3): 739-759. |
[14] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[15] | Mengyao QI, Yichen HOU, Lei CHEN, Lijun YANG. Numerical simulation of a novel radial all-vanadium flow battery cell [J]. Energy Storage Science and Technology, 2022, 11(10): 3209-3220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||