Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (1): 131-138.doi: 10.19799/j.cnki.2095-4239.2022.0528
• Energy Storage Materials and Devices • Previous Articles Next Articles
Lexian DONG(), Qun ZHENG, Yue HUANG, Zhipeng TIAN, Jianping LIU, Chao WANG, Bo LIANG, Libin LEI()
Received:
2022-09-15
Revised:
2022-10-08
Online:
2023-01-05
Published:
2023-02-08
Contact:
Libin LEI
E-mail:2741867220@qq.com;libinlei23@gdut.edu.cn
CLC Number:
Lexian DONG, Qun ZHENG, Yue HUANG, Zhipeng TIAN, Jianping LIU, Chao WANG, Bo LIANG, Libin LEI. Research progress on cutting-edge technology of tubular solid oxide fuel cells[J]. Energy Storage Science and Technology, 2023, 12(1): 131-138.
Table 1
Representative work on tubular SOFCs in last 5 years"
序号 | 电池材料组成(阳极|电解质|阴极) | 电解质类型 | 工作温度/℃ | 支撑方式 | 功率密度/(mW/cm2) | 年份 | 文献 |
---|---|---|---|---|---|---|---|
1 | Ni/Fe-YSZ|YSZ|LSM-YSZ | 氧离子导体 | 800 | 阳极支撑 | 480 | 2018 | [ |
2 | Ni-ScSZ|ScSZ|LSM-ScSZ | 800 | 惰性基体支撑 | 616 | 2018 | [ | |
3 | Ni-YSZ|YSZ|LSM | 800 | 阳极支撑 | 1270 | 2019 | [ | |
4 | Ni-YSZ|YSZ|LSM | ─ | 金属支撑 | ─ | 2019 | [ | |
5 | Ni-SDC|LSMO|LSCF | 850 | 阳极支撑 | 240 | 2020 | [ | |
6 | Ni-YSZ|GDC|LSCF-GDC | 700 | 阳极支撑 | 2270 | 2020 | [ | |
7 | Ni-SDC|SDC|PBCO | 700 | 惰性基体支撑 | 1150 | 2020 | [ | |
8 | NiMo-YSZ|YSZ/SDC|LSCF | 750 | 惰性基体支撑 | 354(CH4为燃料) | 2021 | [ | |
9 | Ni-GDC|GDC|NSCO-GDC | 700 | 电解质支撑 | 460 | 2021 | [ | |
10 | Ni-YSZ|YSZ|PBFZr-GDC | 750 | 阳极支撑 | 1260 | 2021 | [ | |
11 | Ni-YSZ|LSGM|SSC | 600 | 阳极支撑 | 440 | 2022 | [ | |
12 | Ni-YSZ|BSCZGY|LSCF- BSCZGY | 质子导体 | 600 | 阳极支撑 | 187 | 2018 | [ |
13 | Ni- BZI20|BZI20|LSCF | 600 | 阳极支撑 | 143 | 2019 | [ | |
14 | Ni-BCZYYb|BZCYYb|LSCF- BZCYYb | 600 | 金属支撑 | 189 | 2019 | [ | |
15 | Ni-BZCYYb|BZCYYb|LSCF-SDC | 600 | 阳极支撑 | 700 | 2019 | [ | |
16 | Ni-BCZYYb|BCZYYb|PNOF-BCZYYb | 650 | 阳极支撑 | 580 | 2021 | [ | |
17 | Ni-BCZYYb|BCZYYb|BCFZY | 600 | 阳极支撑 | 517 | 2021 | [ | |
18 | Ni-BZCYYb(Fe)|BZCYYb|PBSCF | 700 | 阳极支撑 | 1078(NH3为燃料) | 2022 | [ | |
19 | Ni-BZCYYb(Fe-CeO x )|BZCYYb|PBSCF | 700 | 阳极支撑 | 1060(NH3为燃料) | 2022 | [ |
Table 3
Comparison of the characteristics of commonly used preparation methods for tubular SOFCs"
制备方法 | 主要制备对象 | 特点 |
---|---|---|
挤出法 | 支撑体 | 操作简单、成本低、生产效率高,但管体在干燥和烧结时易变形 |
相转化法 | 支撑体 | 组件缺陷少、生产效率高,但浆料的配制要求高 |
凝胶注模法 | 支撑体 | 成本低、耗时短,但组件质量稳定性不高 |
等静压法 | 支撑体 | 组件质量稳定性高,但生产效率低,微管组件对成型模具的要求较高 |
浸渍涂覆技术 | 薄膜状电解质/电极 | 组件厚度能被精确控制,表面缺陷少,但生产效率低 |
电化学沉积法 | 薄膜状电解质/电极 | 操作简单,但胶体参数和沉积条件较难控制 |
激光3D打印技术 | 半电池 | 能精确调控组件的微结构和形状,且组件可实现快速成型、干燥与烧结,但生产设备复杂、成本高昂 |
1 | HUANG K, SINGHAL S C. Cathode-supported tubular solid oxide fuel cell technology: A critical review[J]. Journal of Power Sources, 2013, 237: 84-97. |
2 | BELLO I T, ZHAI S, ZHAO S Y, et al. Scientometric review of proton-conducting solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(75): 37406-37428. |
3 | VAN ECK N J, WALTMAN L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523-538. |
4 | ARIA M, CUCCURULLO C. Bibliometrix: An R-tool for comprehensive science mapping analysis[J]. Journal of Informetrics, 2017, 11(4): 959-975. |
5 | HAN Z Y, YANG Z B, HAN M F. Optimization of Ni-YSZ anodes for tubular SOFC by a novel and efficient phase inversion-impregnation approach[J]. Journal of Alloys and Compounds, 2018, 750: 130-138. |
6 | HEDAYAT N, PANTHI D, DU Y H. Inert substrate-supported microtubular solid oxide fuel cells based on highly porous ceramic by low-temperature co-sintering[J]. Ceramics International, 2019, 45(1): 579-587. |
7 | LI T, HEENAN T M M, RABUNI M F, et al. Design of next-generation ceramic fuel cells and real-time characterization with synchrotron X-ray diffraction computed tomography[J]. Nature Communications, 2019, 10: 1497. |
8 | CHOI D W, OHASHI M, LOZANO C A, et al. Sulfur diffusion of hydrogen sulfide contaminants to cathode in a micro-tubular solid oxide fuel cell[J]. Electrochimica Acta, 2019, 321: doi: 10.1016/j.electacta.2019.134713. |
9 | WANG S F, HSU Y F, HSIA P, et al. Design and characterization of apatite La9.8Si5.7Mg0.3O26± δ-based micro-tubular solid oxide fuel cells[J]. Journal of Power Sources, 2020, 460: doi: 10.1016/j.jpowsour.2020.228072. |
10 | LI T, LU X K, RABUNI M F, et al. High-performance fuel cell designed for coking-resistance and efficient conversion of waste methane to electrical energy[J]. Energy & Environmental Science, 2020, 13(6): 1879-1887. |
11 | REN C L, GAN Y, YANG C Y, et al. Fabrication and characterization of direct methane fueled thin film SOFCs supported by microchannel-structured microtubular substrates[J]. ACS Applied Energy Materials, 2020, 3(2): 1831-1841. |
12 | LIN Z X, ZHAO K, CHENG G, et al. Catalyst layer supported solid oxide fuel cells running on methane[J]. Journal of Power Sources, 2021, 507: doi: 10.1016/j.jpowsour.2021.230317. |
13 | WANG S F, HSU Y F, LIAO Y L, et al. High-performance NdSrCo2O5+ δ-Ce0.8Gd0.2O2- δ composite cathodes for electrolyte-supported microtubular solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(62): 31778-31787. |
14 | LI G D, GOU Y J, CHENG X J, et al. Enhanced electrochemical performance of the Fe-based layered perovskite oxygen electrode for reversible solid oxide cells[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34282-34291. |
15 | ISHIHARA T, TAN Z, SONG J T, et al. Sequential-infiltration of Ce and Ni in NiO-YSZ fuel electrode for tubular type solid oxide reversible cells (SORC) using LaGaO3 electrolyte film[J]. Solid State Ionics, 2022, 379: doi: 10.1016/j.ssi.2022.115914. |
16 | AMIRI T, SINGH K, SANDHU N K, et al. High performance tubular solid oxide fuel cell based on Ba0.5Sr0.5Ce0.6Zr0.2Gd0.1Y0.1O3- δ Proton conducting electrolyte[J]. Journal of the Electrochemical Society, 2018, 165(10): doi: 10.1149/2.0331810jes. |
17 | KUROHA T, YAMAUCHI K, MIKAMI Y, et al. Effect of added Ni on defect structure and proton transport properties of indium-doped Barium zirconate[J]. International Journal of Hydrogen Energy, 2020, 45(4): 3123-3131. |
18 | VAFAEENEZHAD S, SANDHU N K, HANIFI A R, et al. Development of proton conducting fuel cells using nickel metal support[J]. Journal of Power Sources, 2019, 435: doi: 10.1016/j.jpowsour.2019.226763. |
19 | CHEN C C, DONG Y, LI L, et al. Electrochemical properties of micro-tubular intermediate temperature solid oxide fuel cell with novel asymmetric structure based on BaZr0.1Ce0.7Y0.1Yb0.1O3- δ proton conducting electrolyte[J]. International Journal of Hydrogen Energy, 2019, 44(31): 16887-16897. |
20 | LI G D, GOU Y J, REN R Z, et al. Fluorinated Pr2NiO4+ δ as high-performance air electrode for tubular reversible protonic ceramic cells[J]. Journal of Power Sources, 2021, 508: doi: 10.1016/j.jpowsour.2021.230343. |
21 | ZHU L Z, O'HAYRE R, SULLIVAN N P. High performance tubular protonic ceramic fuel cells via highly-scalable extrusion process[J]. International Journal of Hydrogen Energy, 2021, 46(54): 27784-27792. |
22 | PAN Y X, ZHANG H, XU K, et al. A high-performance and durable direct NH3 tubular protonic ceramic fuel cell integrated with an internal catalyst layer[J]. Applied Catalysis B: Environmental, 2022, 306: doi: 10.1016/j.apcatb.2022.121071. |
23 | HOU M Y, PAN Y X, CHEN Y. Enhanced electrochemical activity and durability of a direct ammonia protonic ceramic fuel cell enabled by an internal catalyst layer[J]. Separation and Purification Technology, 2022, 297: doi: 10.1016/j.seppur.2022.121483. |
24 | LI G D, GOU Y J, QIAO J S, et al. Recent progress of tubular solid oxide fuel cell: From materials to applications[J]. Journal of Power Sources, 2020, 477: doi: 10.1016/j.jpowsour.2020.228693. |
25 | LIU Y X, WANG S F, HSU Y F, et al. Characteristics of La0.8Sr0.2Ga0.8Mg0.2O3- δ-supported micro-tubular solid oxide fuel cells with LaCo0.4Ni0.6- xCuxO3- δ cathodes[J]. International Journal of Hydrogen Energy, 2018, 43(11): 5703-5713. |
26 | LAWLOR V. Review of the micro-tubular solid oxide fuel cell (II): Cell design issues and research activities[J]. Journal of Power Sources, 2013, 240: 421-441. |
27 | HAN Z Y, YANG Z B, HAN M F. Fabrication of metal-supported tubular solid oxide fuel cell by phase-inversion method and in situ reduction[J]. International Journal of Hydrogen Energy, 2016, 41(25): 10935-10941. |
28 | ZHAO K, KIM B H, XU Q, et al. Performance improvement of inert-substrate-supported tubular single cells via microstructure modification[J]. Journal of Power Sources, 2015, 274: 799-805. |
29 | ZHANG X B, JIN Y M, LI D, et al. A review on recent advances in micro-tubular solid oxide fuel cells[J]. Journal of Power Sources, 2021, 506: doi: 10.1016/j.jpowsour.2021.230135. |
30 | TIMURKUTLUK C, TIMURKUTLUK B, KAPLAN Y. Experimental optimization of the fabrication parameters for anode-supported micro-tubular solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23294-23309. |
31 | EMLEY B, YAO Y. Controlling porosity by freeze casting in tubular solid oxide fuel cell anode supports[J]. ECS Meeting Abstracts, 2020, (40): 2579. |
32 | REN C, ZHANG Y X, XU Q, et al. Effect of non-solvent from the phase inversion method on the morphology and performance of the anode supported microtubular solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6926-6933. |
33 | AHMAD S H, JAMIL S M, OTHMAN M H D, et al. Co-extruded dual-layer hollow fiber with different electrolyte structure for a high temperature micro-tubular solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(14): 9116-9124. |
34 | PANTHI D, HEDAYAT N, WOODSON T, et al. Tubular solid oxide fuel cells fabricated by a novel freeze casting method[J]. Journal of the American Ceramic Society, 2020, 103(2): 878-888. |
35 | KHERAD R, DODANGEI S, MOUSSAVI S H, et al. Characterization of anode supported micro-tubular solid oxide fuel cells prepared by successive non-aqueous electrophoretic deposition[J]. Journal of Electroceramics, 2022, 48(1): 1-7. |
36 | MU S L, ZHAO Z Y, HUANG H, et al. Advanced manufacturing of intermediate-temperature protonic ceramic electrochemical cells[J]. The Electrochemical Society Interface, 2020, 29(4): 67-73. |
37 | 郑丽娜, 王文中, 贾凯杰, 等. 3D打印技术在固体氧化物燃料电池领域的研究进展[J]. 储能科学与技术, 2021, 10(6): 1952-1962. |
ZHENG L N, WANG W Z, JIA K J, et al. Three-dimensional printing technologies in the field of solid oxide fuel cells[J]. Energy Storage Science and Technology, 2021, 10(6): 1952-1962. | |
38 | MU S L, HONG Y Z, HUANG H, et al. A novel laser 3D printing method for the advanced manufacturing of protonic ceramics[J]. Membranes, 2020, 10(5): 98. |
39 | TAGHIKHANI K, DUBOIS A, BERGER J R, et al. Modeling electro-chemo-mechanical behaviors within the dense BaZr0.8Y0.2O3- δ protonic-ceramic membrane in a long tubular electrochemical cell[J]. Membranes, 2021, 11(6): 378. |
40 | CAO D, ZHOU M Y, YAN X M, et al. High performance low-temperature tubular protonic ceramic fuel cells based on Barium cerate-zirconate electrolyte[J]. Electrochemistry Communications, 2021, 125: doi: 10.1016/j.elecom.2021.106986. |
41 | MA M J, YANG X X, QIAO J S, et al. Progress and challenges of carbon-fueled solid oxide fuel cells anode[J]. Journal of Energy Chemistry, 2021, 56: 209-222. |
42 | 练文超, 雷励斌, 梁波, 等. 质子导体固体氧化物电化学装置中氨的利用与合成[J]. 储能科学与技术, 2021, 10(6): 1998-2007. |
LIAN W C, LEI L B, LIANG B, et al. Utilization and synthesis of ammonia in proton-conducting solid oxide electrochemical devices[J]. Energy Storage Science and Technology, 2021, 10(6): 1998-2007. |
[1] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[2] | WU Yuting, KOU Zhenfeng, ZHANG Cancan, WU Yiyang. Analysis of the dynamic distribution parameters of a solid sodium chloride column heat exchanger [J]. Energy Storage Science and Technology, 2022, 11(6): 1988-1995. |
[3] | Huakun HU, Xinli LI, Wendong XUE, Peng JIANG, Yong LI. Knowledge map analysis of a low-temperature electrolyte for lithium-ion battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(1): 379-396. |
[4] | Liping CHEN, Jinkui FENG, Yuan TIAN, Yongling AN, Guangjun DONG. Knowledge mapping analysis of lithium secondary batteries research based on bibliometrics [J]. Energy Storage Science and Technology, 2021, 10(3): 1196-1205. |
[5] | Tenghui WANG, Guo CHEN, Xuelin YANG. Review of preparations of amorphous nanostructured silicon powder [J]. Energy Storage Science and Technology, 2021, 10(2): 440-447. |
[6] | DONG Xu, DU Zhihong, ZHANG Yang, LI Keyun, ZHAO Hailei. SrFeF x O3- x - δ cathode with high catalytic activity for solid oxide fuel cells [J]. Energy Storage Science and Technology, 2020, 9(2): 415-424. |
[7] | ZHANG Yonglong, XIA Huiling, LIN Jiu, CHEN Shaojie, XU Xiaoxiong. Brief analysis the safety of solid-state lithium ion batteries [J]. Energy Storage Science and Technology, 2018, 7(6): 994-1002. |
[8] | LU Xiaochuan, LI Guosheng, MEINHARDT Kerry D, SPRENKLE Vincent L. Development of Na-beta alumina batteries at Pacific Northwest National Laboratory:From tubular to planar [J]. Energy Storage Science and Technology, 2016, 5(3): 309-316. |
[9] | LIU Zhen, SHANG Yuming, WANG Li, HE Xiangming. Research progress of cycle phosphazenes applied in lithium ion batteries [J]. Energy Storage Science and Technology, 2016, 5(2): 181-187. |
[10] | YANG Linlin, LIAO Wenjun, SU Qing, WANG Zijian. The research &development status of vanadium redox flow battery [J]. Energy Storage Science and Technology, 2013, 2(2): 140-145. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||