Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (1): 120-130.doi: 10.19799/j.cnki.2095-4239.2022.0518
• Energy Storage Materials and Devices • Previous Articles Next Articles
Fa MAO(), Xuelai ZHANG(), Weisan HUA
Received:
2022-09-13
Revised:
2022-09-24
Online:
2023-01-05
Published:
2023-02-08
Contact:
Xuelai ZHANG
E-mail:maofa0330@163.com;xlzhang@shmtu.edu.cn
CLC Number:
Fa MAO, Xuelai ZHANG, Weisan HUA. Research progress of aluminum potassium sulfate dodecahydrate phase-change material for thermal energy storage[J]. Energy Storage Science and Technology, 2023, 12(1): 120-130.
Table 4
The main thermal properties of KAl(SO4)2·12H2O composite tempering system"
复合调温体系 | 相变温度/℃ | 过冷度/℃ | 相变潜热/(J/g) | 参考文献 |
---|---|---|---|---|
KAl(SO4)2·12H2O+MgSO4·7H2O (5∶5) | 凝固点41.19 | 1.15 | — | [ |
熔点47.8 凝固点43.7 | 4.1 | 229.6 | [ | |
KAl(SO4)2·12H2O+MgSO4·7H2O (6∶4) +3% MgCl2·6H2O | 凝固点51 | 1.2 | — | [ |
KAl(SO4)2·12H2O+MgSO4·7H2O (6∶4) +1% Na2B4O7·10H2O | 凝固点56 | 0 | — | [ |
KAl(SO4)2·12H2O+MgSO4·7H2O (6∶4)+石墨 | 熔点78 凝固点53 | — | — | [ |
KAl(SO4)2·12H2O+NaSO4·10H2O (8∶2) | 凝固点50.01 | 1.2 | — | [ |
KAl(SO4)2·12H2O+NaSO4·10H2O (9∶1) | 凝固点64 | 0.5 | 198.6 | [ |
KAl(SO4)2·12H2O+NaSO4·10H2O (8.5∶1.5) | 凝固点52 | 0.2 | 219.8 | |
KAl(SO4)2·12H2O+NaSO4·10H2O (6.5∶3.5) | 熔点67.03 凝固点47 | 2.9 | 135.7 | [ |
KAl(SO4)2·12H2O+NaSO4·10H2O (6.5∶3.5)+1%纳米碳粉 | 熔点65.68 凝固点47 | 1.8 | 132.2 | |
KAl(SO4)2·12H2O+Na2HPO4·12H2O (19∶1) | 熔点74 凝固点65 | 0 | — | [ |
KAl(SO4)2·12H2O+ MgCl2·6H2O (7∶3) | 熔点60.15 | 0 | 198.1 | [ |
KAl(SO4)2·12H2O+8%Ala +0.6%Na2SiO3·9H2O+10%膨胀石墨 | 熔点75.50 | 1.866 | 123.5 | [ |
KAl(SO4)2·12H2O+C2H2O4·2H2O (75∶25) +10%尿素 | 熔点42.17 | 0.504 | 194.6 | [ |
1 | QIAO X, KONG X F, LI H, et al. Performance and optimization of a novel active solar heating wall coupled with phase change material[J]. Journal of Cleaner Production, 2020, 250: doi: 10.1016/j.jclepro.2019.119470. |
2 | PABLO-ROMERO M D P, POZO-BARAJAS R, YÑIGUEZ R. Global changes in residential energy consumption[J]. Energy Policy, 2017, 101: 342-352. |
3 | WEI K, WANG Y C, MA B. Effects of microencapsulated phase change materials on the performance of asphalt binders[J]. Renewable Energy, 2019, 132: 931-940. |
4 | PALOMBA V, FRAZZICA A. Comparative analysis of thermal energy storage technologies through the definition of suitable key performance indicators[J]. Energy and Buildings, 2019, 185: 88-102. |
5 | VIZITIU R Ș, ISOPESCU D N, BURLACU A, et al. Energy efficient phase change materials used for an originally designed heat recovery system[J]. Procedia Manufacturing, 2019, 32: 496-503. |
6 | FENG P H, ZHAO B C, WANG R Z. Thermophysical heat storage for cooling, heating, and power generation: A review[J]. Applied Thermal Engineering, 2020, 166: doi: 10.1016/j.applthermaleng. 2019.114728. |
7 | PALOMBA V, FRAZZICA A. Recent advancements in sorption technology for solar thermal energy storage applications[J]. Solar Energy, 2019, 192: 69-105. |
8 | ELIAS C N, STATHOPOULOS V N. A comprehensive review of recent advances in materials aspects of phase change materials in thermal energy storage[J]. Energy Procedia, 2019, 161: 385-394. |
9 | LIU C Z, HU P B, XU Z, et al. Experimental investigation on thermal properties of sodium acetate trihydrate based phase change materials for thermal energy storage[J]. Thermochimica Acta, 2019, 674: 28-35. |
10 | WANG Y, YU K X, PENG H, et al. Preparation and thermal properties of sodium acetate trihydrate as a novel phase change material for energy storage[J]. Energy, 2019, 167: 269-274. |
11 | 金光, 肖安汝, 刘梦云. 相变储能强化传热技术的研究进展[J]. 储能科学与技术, 2019, 8(6): 1107-1115. |
JIN G, XIAO A R, LIU M Y. Research progress on heat transfer enhancement technology of phase change energy storage[J]. Energy Storage Science and Technology, 2019, 8(6): 1107-1115. | |
12 | KHANNA S, NEWAR S, SHARMA V, et al. Electrical enhancement period of solar photovoltaic using phase change material[J]. Journal of Cleaner Production, 2019, 221: 878-884. |
13 | POMIANOWSKI M, HEISELBERG P, ZHANG Y P. Review of thermal energy storage technologies based on PCM application in buildings[J]. Energy and Buildings, 2013, 67: 56-69. |
14 | KUMAR N, HIRSCHEY J, LACLAIR T J, et al. Review of stability and thermal conductivity enhancements for salt hydrates[J]. Journal of Energy Storage, 2019, 24: doi: 10.1016/j.est.2019.100794. |
15 | 房满庭, 章学来, 纪珺, 等. 水合盐复合相变材料的研究进展[J]. 储能科学与技术, 2019, 8(4): 709-717. |
FANG M T, ZHANG X L, JI J, et al. Progress in hydrated salt based composite phase change materials[J]. Energy Storage Science and Technology, 2019, 8(4): 709-717. | |
16 | 张天一, 潘玙璠, 徐一寒, 等. 明矾的宏观晶体形状[J]. 大学化学, 2020, 35(1): 118-124. |
ZHANG T Y, PAN Y F, XU Y H, et al. Macroscopic morphology of alum(K) crystal[J]. University Chemistry, 2020, 35(1): 118-124. | |
17 | 宋婧, 曾令可, 税安泽, 等. 钾明矾蓄热性能的研究与改善[J]. 人工晶体学报, 2007, 36(2): 358-362. |
SONG J, ZENG L K, SHUI A Z, et al. Study on heat storage property and improvement of aluminum potassium sulfate[J]. Journal of Synthetic Crystals, 2007, 36(2): 358-362. | |
18 | ZHANG S L, CHEN F F, PAN W Q, et al. Development of heat transfer enhancement of a novel composite phase change material with adjustable phase change temperature[J]. Solar Energy Materials and Solar Cells, 2020, 210: doi: 10.1016/j.solmat.2020.110457. |
19 | MAO F, ZHANG X L, ZHANG Y, et al. Effects of thickeners on thermophysical properties of Alum as phase change material for energy storage[J]. Journal of Applied Polymer Science, 2022, 139(1): doi: 10.1002/app.51422. |
20 | 刘媛. 碳纤维骨架复合相变材料的蓄热特性研究[D]. 上海: 上海工程技术大学, 2020. |
LIU Y. Study on heat storage characteristics of carbon fiber skeleton composite phase change materials[D]. Shanghai: Shanghai University of Engineering Science, 2020. | |
21 | SUN W C, ZHOU Y, FENG J X, et al. Compounding MgCl2 ·6H2O with NH4Al(SO4)2 ·12H2O or KAl(SO4)2 ·12H2O to obtain binary hydrated salts as high-performance phase change materials[J]. Molecules (Basel, Switzerland), 2019, 24(2): doi: 10.3390/molecules 24020363. |
22 | 林玉琼, 林伊, 颜源凤, 等. 水合无机盐储能相变材料的研究进展[J]. 韩山师范学院学报, 2018, 39(3): 59-66. |
LIN Y Q, LIN Y, YAN Y F, et al. Research progress of hydrated inorganic salt storage phase change materials[J]. Journal of Hanshan Normal University, 2018, 39(3): 59-66. | |
23 | 田禾青. 水合盐低共熔相变储热材料的制备与研究[D]. 兰州: 兰州理工大学, 2013. |
TIAN H Q. Preparation and research of salt hydrates eutectic phase change materials[D]. Lanzhou: Lanzhou University of Technology, 2013. | |
24 | 肖力光, 尚晓月. 水合盐相变储能材料的研究进展[J]. 化工新型材料, 2022, 50(2): 47-50. |
XIAO L G, SHANG X Y. Research progress on inorganic hydrated salt phase change energy storage material[J]. New Chemical Materials, 2022, 50(2): 47-50. | |
25 | 何宇. 三水醋酸钠过冷度及传热性能的同步优化研究[D]. 成都: 西南交通大学, 2018. |
HE Y. Study on simultaneous optimization of super-cooling and heat transfer performance of sodium acetate trihydrate[D]. Chengdu: Southwest Jiaotong University, 2018. | |
26 | 王鑫, 方建华, 刘坪, 等. 相变材料的研究进展[J]. 功能材料, 2019, 50(2): 2070-2075. |
WANG X, FANG J H, LIU P, et al. Research progress of phase change materials[J]. Journal of Functional Materials, 2019, 50(2): 2070-2075. | |
27 | 周鑫晨, 章学来, 华维三, 等. 增稠剂对NH4Al(SO4)2 ·12H2O蓄放热性能的影响[J]. 化工进展, 2019, 38(10): 4520-4533. |
ZHOU X C, ZHANG X L, HUA W S, et al. Influence of thickeners on the heat storage and release performance of NH4Al(SO4)2 ·12H2O[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4520-4533. | |
28 | SAFARI A, SAIDUR R, SULAIMAN F A, et al. A review on supercooling of Phase Change Materials in thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 905-919. |
29 | 汪翔, 章学来, 袁维烨, 等. 基于跨季节储热的相变材料的制备及研究[J]. 化工新型材料, 2019, 47(10): 74-78. |
WANG X, ZHANG X L, YUAN W Y, et al. Preparation and experimental study of phase change material based on seasonal heat storage[J]. New Chemical Materials, 2019, 47(10): 74-78. | |
30 | 朱茂川, 周国兵, 杨霏, 等. 过冷水合盐相变材料跨季节储存太阳能研究进展[J]. 化工进展, 2018, 37(6): 2256-2268. |
ZHU M C, ZHOU G B, YANG F, et al. Progress of seasonal solar energy storage using supercooled salt hydrate phase change materials[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2256-2268. | |
31 | 曾最, 罗凯, 叶伟梁, 等. 十二水磷酸氢二钠相变储能材料研究进展[J]. 化工进展, 2022, 41(2): 827-836. |
ZENG Z, LUO K, YE W L, et al. Research progress of disodium hydrogen phosphate dodecahydrate phase change material[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 827-836. | |
32 | 朱思贤, 邹得球, 鲍家明, 等. 相变材料的过冷特性及调控研究进展[J]. 材料导报, 2020, 34(19): 19075-19082. |
ZHU S X, ZOU D Q, BAO J M, et al. Supercooling characteristics and its adjustment of phase change material: A review[J]. Materials Reports, 2020, 34(19): 19075-19082. | |
33 | 喻彩梅, 章学来, 华维三. 十水硫酸钠相变储能材料研究进展[J]. 储能科学与技术, 2021, 10(3): 1016-1024. |
YU C M, ZHANG X L, HUA W S. Research progress of sodium sulfate decahydrate phase changematerial[J]. Energy Storage Science and Technology, 2021, 10(3): 1016-1024. | |
34 | 钟世民. 应用于暖通空调系统的低温相变储能材料的研制[D]. 哈尔滨: 哈尔滨工业大学, 2010. |
ZHONG S M. Preparation of low temperature phase change materials used in HVAC[D]. Harbin: Harbin Institute of Technology, 2010. | |
35 | 任雪潭, 刘艳春, 曾令可. 成核剂对钾明矾储能物性的影响[J]. 山东陶瓷, 2012, 35(6): 7-9. |
36 | DAI J F, LING R Q, WANG K Z. Thermal performance and dehydration kinetics of KAl(SO4)2 ·12H2O as phase change material[J]. Advanced Materials Research, 2011, 418/419/420: 282-285. |
37 | 张正飞, 秦紫依, 李勇, 等. 相变材料的过冷现象及其抑制方法的研究进展[J]. 材料导报, 2019, 33(21): 3613-3619. |
ZHANG Z F, QIN Z Y, LI Y, et al. Progress in supercooling and suppression methods of phase change materials[J]. Materials Reports, 2019, 33(21): 3613-3619. | |
38 | 顾玥. 基于水合盐复合材料的太阳能相变储能供暖技术[D]. 兰州: 兰州大学, 2021. |
GU Y. Solar phase change energy storage heating technology based on hydrated salt composite materials[D]. Lanzhou: Lanzhou University, 2021. | |
39 | 令闰强. 太阳能跨季节储热单元及相变材料KAl(SO4)2 ·12H2O的研究[D]. 兰州: 兰州理工大学, 2012. |
LING R Q. Investigation on the solar cross season heat storage unit and phase change mateiral aluminium potassium sulfate dodecahydrate[D]. Lanzhou: Lanzhou University of Technology, 2012. | |
40 | 李珺鹏. 功能型聚合物基导热/导电复合材料的制备与应用[D]. 西安: 西北工业大学, 2016. |
LI J P. Synthesis and application of functional polymer-based composites with thermal and electrical conductivity[D]. Xi'an: Northwestern Polytechnical University, 2016. | |
41 | 宋婧, 曾令可, 陈丙璇, 等. 钾明矾热传导性能的研究与改善[J]. 功能材料, 2007, 38(8): 1307-1308, 1312. |
SONG J, ZENG L K, CHEN B X, et al. Study on thermal conduction properties improvement of aluminum potassium sulfate[J]. Journal of Functional Materials, 2007, 38(8): 1307-1308, 1312. | |
42 | 王浩, 何丽红, 杨帆, 等. 聚乙二醇/石墨烯纳米片复合相变材料的制备及其性能研究[J]. 应用化工, 2018, 47(6): 1119-1122, 1126. |
WANG H, HE L H, YANG F, et al. Preparation and properties of polyethylene glycol/graphene nanoplates composite phase change materials[J]. Applied Chemical Industry, 2018, 47(6): 1119-1122, 1126. | |
43 | 王成君, 段志英, 苏琼, 等. 以多级孔碳为支撑基体的复合相变材料在光热转换与存储方面的研究进展[J]. 材料导报, 2020, 34(23): 23074-23080. |
WANG C J, DUAN Z Y, SU Q, et al. Research progress in photo-thermal conversion and storage of multistage porous carbon supported composite phase change materials[J]. Materials Reports, 2020, 34(23): 23074-23080. | |
44 | SUN M J, LIU L Q, MA F K, et al. Investigating the effect of graphene nanoplatelets on the thermal conductivity of KAl(SO4)2 ·12H2O[J]. Materials Research Express, 2018, 5(4): doi: 10.1088/2053-1591/aabdd6. |
45 | 胡定华, 许肖永, 林肯, 等. 石蜡/膨胀石墨/石墨片复合相变材料导热性能研究[J]. 工程热物理学报, 2021, 42(9): 2414-2418. |
HU D H, XU X Y, LIN K, et al. Study on heat conductivity of paraffin/expanded graphite/graphite sheet composite material[J]. Journal of Engineering Thermophysics, 2021, 42(9): 2414-2418. | |
46 | 杜文清, 费华, 顾庆军, 等. 膨胀石墨基定形复合相变材料的特性及其应用研究进展[J]. 化工新型材料, 2021, 49(11): 31-35, 40. |
DU W Q, FEI H, GU Q J, et al. Research progress on property and application of expansion graphite based fixed-shape composite phase change material[J]. New Chemical Materials, 2021, 49(11): 31-35, 40. | |
47 | ZHANG S L, WU W, WANG S F. Experimental investigations of Alum/expanded graphite composite phase change material for thermal energy storage and its compatibility with metals[J]. Energy, 2018, 161: 508-516. |
48 | WU S F, YAN T, KUAI Z H, et al. Experimental and numerical study of modified expanded graphite/hydrated salt phase change material for solar energy storage[J]. Solar Energy, 2020, 205: 474-486. |
49 | JAGJIWANRAM, SINGH R. Effective thermal conductivity of highly porous two-phase systems[J]. Applied Thermal Engineering, 2004, 24(17/18): 2727-2735. |
50 | 王智平, 田禾青, 王克振, 等. 钾明矾基低共熔相变储热材料的制备与研究[J]. 人工晶体学报, 2013, 42(3): 491-496. |
WANG Z P, TIAN H Q, WANG K Z, et al. Preparation and study on the matrix of aluminum potassium sulfate eutectic phase change heat storage materials[J]. Journal of Synthetic Crystals, 2013, 42(3): 491-496. | |
51 | 史嘉乐. 相变蓄热复合材料MgSO4 ·7H2O/KAl(SO4)2 ·12H2O性能及其在太阳能干燥中的应用[D]. 西安: 西北大学, 2018. |
SHI J L. The performance of MgSO4 ·7H2O/KAl(SO4)2 ·12H2O phase change heat storage composite material and its application in solar drying[D]. Xi'an: Northwest University, 2018. | |
52 | 杨棁. 硫酸镁—硫酸铝钾复合相变蓄热材料的制备及其性能研究[D]. 西安: 西北大学, 2018. |
YANG Z. Preparation and performance of magnesium sulfate-potassium sulfate composite phase change heat storage material[D]. Xi'an: Northwest University, 2018. | |
53 | 温辉, 林玉琼, 郭慈绵, 等. KAl(SO4)2 ·12H2O-MgSO4 ·7H2O复合相变体系储能特性的探究[J]. 当代化工, 2019, 48(10): 2190-2193. |
WEN H, LIN Y Q, GUO C M, et al. Study on energy storage characteristics of KAl(SO4)2 ·12H2O-MgSO4 ·7H2O composite phase change system[J]. Contemporary Chemical Industry, 2019, 48(10): 2190-2193. | |
54 | 林伊, 林玉琼, 温辉, 等. KAl(SO4)2 ·12H2O复合体系的相变特性[J]. 当代化工研究, 2019(4): 182-184. |
LIN Y, LIN Y Q, WEN H, et al. Phase change characteristics of KAl(SO4)2 ·12H2O composite system[J]. Modern Chemical Research, 2019(4): 182-184. | |
55 | 罗建文. MgSO4-Na2SO4、KAl(SO4)2-Na2SO4水合盐相变储热材料优化及在太阳能蓄热器中的应用[D]. 西安: 西北大学, 2017. |
LUO J W. The optimization of MgSO4-Na2SO4, KAl(SO4)2-Na2SO4 salt hydrate phase change heat storage material and its application in solar thermal storage[D]. Xi'an: Northwest University, 2017. | |
56 | LIU Y, LIU W J, ZHANG S H, et al. Preparation and characterization of new nano-particle mixed as thermal storage material[J]. Applied Thermal Engineering, 2019, 163: doi: 10.1016/j.applthermaleng.2019.114386. |
57 | CHEN W C, LIANG X H, HAN W H, et al. 3D shape-stable temperature-regulated macro-encapsulated phase change material: KAl(SO4)2 ·12H2O-C2H2O4 ·2H2O-CO(NH2)2 eutectic/polyurethane foam as core and carbon modified silicone resin as shell[J]. Journal of Materials Science & Technology, 2022, 100: 27-35. |
58 | 宋婧, 曾令可, 税安泽, 等. 复合蓄热材料的研制与应用[J]. 硅酸盐通报, 2007, 26(1): 173-176, 198. |
SONG J, ZENG L K, SHUI A Z, et al. Preparation and application of composite heat storage material[J]. Bulletin of the Chinese Ceramic Society, 2007, 26(1): 173-176, 198. | |
59 | MALIK M S, IFTIKHAR N, WADOOD A, et al. Design and fabrication of solar thermal energy storage system using potash alum as a PCM[J]. Energies, 2020, 13(23): doi: 10.3390/en1323 6169. |
60 | 史嘉乐, 杨棁, 陈静, 等. 相变蓄热材料对太阳能干燥系统热能的调配作用[J]. 应用能源技术, 2018(2): 45-49. |
SHI J L, YANG Z, CHEN J, et al. Thermal adjustment of phase change material for solar drying system[J]. Applied Energy Technology, 2018(2): 45-49. |
[1] | Junlei WANG, Diling ZHANG, Kun WANG, Dongdong XU, Xianggui XU, Hua YAO, Wenwei LIU, Yun HUANG. Carbonates/blast furnace slag form-stable phase change materials [J]. Energy Storage Science and Technology, 2022, 11(9): 3028-3034. |
[2] | Hong LI, Qiang ZHANG. A review of energy storage science and technology projects supported by national key R&D program [J]. Energy Storage Science and Technology, 2022, 11(9): 2691-2701. |
[3] | FENG Jinxin, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on phase-change emulsions [J]. Energy Storage Science and Technology, 2022, 11(6): 1968-1979. |
[4] | Jinpeng HAO, Yingchun DU, Hong WU, Kun HE, Lei WANG. Numerical investigation of electrohydrodynamic solid-liquid phase change in square enclosure with sinusoidal temperature distribution [J]. Energy Storage Science and Technology, 2022, 11(5): 1446-1454. |
[5] | Shuankui LI, Yuan LIN, Feng PAN. Research progress in thermal energy storage and conversion technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1551-1562. |
[6] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
[7] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
[8] | Huixiang WANG, Yaxuan XIONG, Jing REN, Chenhua YAO, Chaoyu SONG, Yuting WU, Yulong DING. Fabrication and performance investigation of Na2CO3/Carbide slag shape-stable phase change composites [J]. Energy Storage Science and Technology, 2022, 11(12): 3819-3827. |
[9] | Qianjun MAO, Kaili CHEN. Heat transfer performance study of wedge-shaped shell-and-tube heat storage tank [J]. Energy Storage Science and Technology, 2022, 11(11): 3658-3666. |
[10] | Qi ZHANG, Yujing WANG, Yinlei LI, Chongyang LIU. A novel composite phase change material with cold storage and insulation and its application [J]. Energy Storage Science and Technology, 2022, 11(10): 3133-3141. |
[11] | Yu WU, Zhijiang JI, Yongchao WANG, Shuai XIE, Jing WANG, Chao MA. Preparation and performance analysis of sodium sulfate decahydrate/expanded vermiculite film phase change composite [J]. Energy Storage Science and Technology, 2022, 11(10): 3142-3150. |
[12] | Huihui YANG, Li ZENG, Bo TANG, Xiaoqing WANG, Yong LU. Experimental study on an EG/paraffin composite thermal storage material and its feasibility for off-peak power heating utilization [J]. Energy Storage Science and Technology, 2022, 11(1): 19-29. |
[13] | Wei WU, Shoucheng LI, Weian XIE. Experimental study on the influence of fin parameters on heat transfer of PCM based radiator [J]. Energy Storage Science and Technology, 2021, 10(6): 2303-2311. |
[14] | Bohui LU, Zhicheng SHI, Yongxue ZHANG, Hongyu ZHAO, Zixi WANG. Investigation of the charging and discharging performance of paraffin/nano-Fe3O4 composite phase change material in a shell and tube thermal energy storage unit [J]. Energy Storage Science and Technology, 2021, 10(5): 1709-1719. |
[15] | Dehou XU, Xuezhi ZHOU, Yujie XU, Zhitao ZUO, Haisheng CHEN. Performance law of a new composite seasonal underground thermal storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1768-1776. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||