Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (2): 415-424.doi: 10.19799/j.cnki.2095-4239.2020.0011
Previous Articles Next Articles
DONG Xu1, DU Zhihong1,2, ZHANG Yang1, LI Keyun1, ZHAO Hailei1,2()
Received:
2020-01-05
Revised:
2020-01-12
Online:
2020-03-05
Published:
2020-03-15
Contact:
Hailei ZHAO
E-mail:hlzhao@ustb.edu.cn
CLC Number:
DONG Xu, DU Zhihong, ZHANG Yang, LI Keyun, ZHAO Hailei. SrFeF x O3- x - δ cathode with high catalytic activity for solid oxide fuel cells[J]. Energy Storage Science and Technology, 2020, 9(2): 415-424.
Table 1
Structure parameters of Rietveld refinement for XRD data of SrFeF x O3- x - δ (x=0, 0.125, 0.25) samples"
参数 | x | |||
---|---|---|---|---|
0 | 0.125 | 0.25 | ||
空间群 | P4mm | Pm-3m | P4mm | Pm-3m |
a=b/? | 3.86411(3) | 3.86593(4) | 3.86583(2) | 3.86809(2) |
c/? | 3.84882(5) | 3.85378(2) | 3.86583(2) | 3.86809(2) |
V/?3 | 57.468(1) | 57.596(2) | 57.774(2) | 57.875(1) |
O/F Uiso | 0.0150(3) | 0.0097(3) | 0.0095(3) | 0.0107(3) |
Fe Uiso | 0.0450(5) | 0.0023(3) | 0.0039(5) | 0.0142(5) |
Sr Uiso | 0.015(1) | 0.0020(5) | 0.020(2) | 0.038(1) |
χ 2 | 3.239 | 2.225 | 3.305 | |
R p/% | 4.00 | 3.58 | 4.01 | |
R wp/% | 5.70 | 4.76 | 5.73 |
Table 2
Fitted K ex and D chem of ECR data for SrFeO3- x - δ F x (x=0~0.25) samples"
温度 / oC | K ex ×105/cm·s-1 | D chem×105/cm2 ·s-1 | ||||
---|---|---|---|---|---|---|
x=0 | x=0.125 | x=0.25 | x=0 | x=0.125 | x=0.25 | |
850 | 10.22 | 17.57 | 69.47 | 1.53 | 28.73 | 141.14 |
800 | 6.36 | 12.20 | 53.48 | 1.08 | 20.67 | 115.17 |
750 | 2.83 | 7.68 | 41.58 | 5.85 | 13.3 | 90.37 |
700 | 1.77 | 5.44 | 30.19 | 3.21 | 9.24 | 67.58 |
650 | 1.04 | 3.12 | 20.11 | 1.50 | 6.03 | 45.22 |
1 | 毛宗强 .燃料电池 [M].北京: 化学工业出版社, 2005. |
MAO Z Q . Fuel cell [M]. Beijing: Chemical Industry Press, 2005. | |
2 | 苏巴辛格尔 .固体氧化物燃料电池堆及系统[J].中国工程科学, 2013, 15(2): 7-13. |
SUBASINGER . Solid oxide fuel cell stack and system[J]. China Engineering Science, 2013, 15 (2): 7-13. | |
3 | MINH N Q . Solid oxide fuel cell technology-features and applications[J]. Solid State Ionics, 2004, 174(1-4): 271-277. |
4 | CHOI Y M , MEBANE D S , LIN M C , et al . Oxygen reduction on LaMnO3-based cathode materials in solid oxide fuel cells[J]. Chemistry of Materials, 2007, 19(7): 1690-1699. |
5 | NOWOTNY J , REKAS M . Defect chemistry of (La,Sr)MnO3 [J]. Journal of the American Ceramic Society, 1998, 81(1): 67-80. |
6 | JIANG S P . Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: A review[J]. Journal of Materials Science, 2008, 43(21): 6799-6833. |
7 | NIU Y , ZHOU W , SUNARSO J , et al . High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells[J]. Journal of Materials Chemistry, 2010, 20(43): 9619-9622. |
8 | HOU S , ALONSO J A , GOODENOUGH J B . Co-free, iron perovskites as cathode materials for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2010, 195(1): 280-284. |
9 | YU X , LONG W , JIN F , et al . Cobalt-free perovskite cathode materials SrFe1- x Ti x O3- δ and performance optimization for intermediate-temperature solid oxide fuel cells[J]. Electrochimica Acta, 2014, 123: 426-434. |
10 | YAO C , ZHANG H , DONG Y , et al . Characterization of Ta/W co-doped SrFeO3- δ perovskite as cathode for solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2019, 797: 205-212. |
11 | YAO C , ZHANG H , LIU X , et al . A niobium and tungsten co-doped SrFeO3- δ perovskite as cathode for intermediate temperature solid oxide fuel cells[J]. Ceramics International, 2019, 45(6): 7351-7358. |
12 | SHAO Z , HAILE S M , AHN J, et al . A thermally self-sustained micro solid-oxide fuel-cell stack with high power density[J]. Nature, 2005, 435(7043): 795. |
13 | LI S , LV Z , HUANG X , et al . Thermal, electrical, and electrochemical properties of Lanthanum-doped Ba0.5Sr0.5Co0.8Fe0.2O3- δ [J]. Journal of Physics and Chemistry of Solids, 2007, 68(9): 1707-1712. |
14 | OISHI J , OTOMO J , OSHIMA Y , et al . The effects of minor elements in La0.6Sr0.4Co0.2Fe0.8O3- δ cathodes on oxygen reduction reaction[J]. Journal of Power Sources, 2015, 277: 44-51. |
15 | ZHOU Q , ZHANG L , HE T . Cobalt-free cathode material SrFe0.9Nb0.1O3- δ for intermediate-temperature solid oxide fuel cells[J]. Electrochemistry Communications, 2010, 12(2): 285-287. |
16 | WANG Y , XING Y , LI Y , et al . Thermal cycling durability improved by doping fluorine to PrBaCo2O5+ δ as oxygen reduction reaction electrocatalyst in intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2018, 402: 363-372. |
17 | XUE J , LI J , ZHUANG L , et al . Anion doping CO2-stable oxygen permeable membranes for syngas production[J]. Chemical Engineering Journal, 2018, 347: 84-90. |
18 | ZHU J , LIU G , LIU Z , et al . Unprecedented perovskite oxyfluoride membranes with high-efficiency oxygen ion transport paths for low-temperature oxygen permeation[J]. Advanced Materials, 2016, 28(18): 3511-3515. |
19 | LU F , ZHOU Y , LIU J , et al . Enhancement of F-doping on the electrochemical behavior of carbon-coated LiFePO4 nanoparticles prepared by hydrothermal route[J]. Electrochimica Acta, 2011, 56(24): 8833-8838. |
20 |
LIU J , JIN Z , MIAO L , et al . A novel anions and cations co-doped strategy for developing high-performance cobalt-free cathode for intermediate temperature proton-conducting solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2019, doi: 10.1016/j.ijhydene.2019.03.001 .
doi: 10.1016/j.ijhydene.2019.03.001 |
21 | GOPAL C B , HAILE S M . An electrical conductivity relaxation study of oxygen transport in samarium doped ceria[J]. Journal of Materials Chemistry A, 2014, 2(7): 2405-2417. |
22 | LARSON A C , BVON DREELE R . Los Alamos Natl. Lab. Rep[R]. LAUR, 2004, 86: 748. |
23 | FELDHOFF A , MARTYNCZUK J , AMOLD M , et al . Spin-state transition of iron in (Ba0.5Sr0.5)(Fe0.8Zn0.2)O3- δ perovskite[J]. Journal of Solid State Chemistry, 2009, 182(11): 2961-2971. |
24 | LIU X , ZHAO H , YANG J , et al . Lattice characteristics, structure stability and oxygen permeability of BaFe1- x Y x O3- δ ceramic membranes[J]. Journal of Membrane Science, 2011, 383(1-2): 235-240. |
25 | CHEN D , RAN R , ZHANG K , et al . Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte[J]. Journal of Power Sources, 2009, 188(1): 96-105. |
26 | WANG L , MERKLE R , MASTRIKOV Y A , et al . Oxygen exchange kinetics on solid oxide fuel cell cathode materials-general trends and their mechanistic interpretation[J]. Journal of Materials Research, 2012, 27(15): 2000-2008. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[3] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[4] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[5] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[6] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[7] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[8] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[9] | Chunlin YU, Xudong CHEN, Toshio MIYAGAWA, Hui SUN, Xingwang ZHANG, Lige TONG. Precursor with special structure for improving the performance of the ternary cathode material of Li-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1000-1007. |
[10] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[11] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
[12] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[13] | Miao WU, Guiqing ZHAO, Zhongzhu QIU, Baofeng WANG. Preparation and electrochemical properties of NiCo2O4 as a novel cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1019-1025. |
[14] | Linhui JIA, Zejia GAI, Moxi LI, Huagen LIANG. Research progress of MOFs and their derivatives as cathode catalysts for Li-O2 batteries [J]. Energy Storage Science and Technology, 2022, 11(2): 503-510. |
[15] | Penghui LI, Caiwen WU, Jianpeng REN, Wenjuan WU. Research progress of lignin as electrode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 66-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||