Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (3): 1000-1007.doi: 10.19799/j.cnki.2095-4239.2021.0471
Previous Articles Next Articles
Chunlin YU1,2(), Xudong CHEN1, Toshio MIYAGAWA1, Hui SUN1, Xingwang ZHANG2(), Lige TONG3
Received:
2021-09-09
Revised:
2021-09-22
Online:
2022-03-05
Published:
2022-03-11
Contact:
Xingwang ZHANG
E-mail:yuchunlin@zju.edu.cn;xwzhang@zju.edu.cn
CLC Number:
Chunlin YU, Xudong CHEN, Toshio MIYAGAWA, Hui SUN, Xingwang ZHANG, Lige TONG. Precursor with special structure for improving the performance of the ternary cathode material of Li-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(3): 1000-1007.
Table 3
Main physical and chemical indexes of cathode materials and commercial products prepared under different ammonia values"
指标 | NCM-L | NCM-M | NCM-H | 市售产品 |
---|---|---|---|---|
BET/(m2/g) | 1.29 | 0.86 | 0.58 | 0.53 |
D50/μm | 6.97 | 6.88 | 7.03 | 7.02 |
Li/% | 1.03 | 1.03 | 1.03 | 1.02 |
Ni/% | 0.827 | 0.828 | 0.825 | 0.825 |
Co/% | 0.121 | 0.118 | 0.12 | 0.12 |
Mn/% | 0.052 | 0.054 | 0.055 | 0.055 |
松装/(g/cm3) | 1.64 | 1.72 | 1.79 | 1.77 |
H2O/10-6 | 586 | 562 | 514 | 534 |
自由Li+/% | 1140 | 1433 | 1362 | 1450 |
1 | LEE W, MUHAMMAD S, SERGEY C, et al. Advances in the cathode materials for lithium rechargeable batteries[J]. Angewandte Chemie, 2020, 59(7): 2578-2605. |
2 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
3 | 陈晓轩, 李晟, 胡泳钢, 等. 锂离子电池三元层状氧化物正极材料失效模式分析[J]. 储能科学与技术, 2019, 8(6): 1003-1016. |
CHEN X X, LI S, HU Y G, et al. Failure mechanism of Li1+ x(NCM)1- xO2 layered oxide cathode material during capacity degradation[J]. Energy Storage Science and Technology, 2019, 8(6): 1003-1016. | |
4 | CHA H, KIM J, LEE H, et al. Boosting reaction homogeneity in high-energy lithium-ion battery cathode materials[J]. Advanced Materials, 2020, 32(39): doi: 10.1002/adma.202003040. |
5 | 李文挺, 安胜利, 邱新平. 钾离子电池关键材料的研究进展[J]. 储能科学与技术, 2018, 7(3): 365-375. |
LI W T, AN S L, QIU X P. Research on key materials for potassium ion batteries[J]. Energy Storage Science and Technology, 2018, 7(3): 365-375. | |
6 | 李雨, 赵慧春, 白莹, 等. 高能量密度层状富锂锰基正极材料的改性研究进展[J]. 储能科学与技术, 2018, 7(3): 394-403. |
LI Y, ZHAO H C, BAI Y, et al. Progress in the modification of lithium-rich manganese-based layered cathode material[J]. Energy Storage Science and Technology, 2018, 7(3): 394-403. | |
7 | NISAR U, MURALIDHARAN N, ESSEHLI R, et al. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials[J]. Energy Storage Materials, 2021, 38: 309-328. |
8 | ZHANG M L, ZHAO H Y, TAN M, et al. Yttrium modified Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance as high energy density cathode material at 4.5 V high voltage[J]. Journal of Alloys and Compounds, 2019, 774: 82-92. |
9 | ZHANG Y D, LI Y, XIA X H, et al. High-energy cathode materials for Li-ion batteries: A review of recent developments[J]. Science China Technological Sciences, 2015, 58(11): 1809-1828. |
10 | KIM U H, RYU H H, KIM J H, et al. Microstructure-controlled Ni-rich cathode material by microscale compositional partition for next-generation electric vehicles[J]. Advanced Energy Materials, 2019, 9(15): doi: 10.1002/aenm.201803902. |
11 | NAM K M, KIM H J, KANG D H, et al. Ammonia-free coprecipitation synthesis of a Ni-Co-Mn hydroxide precursor for high-performance battery cathode materials[J]. Green Chemistry, 2015, 17(2): 1127-1135. |
12 | SHEN Y B, WU Y Q, XUE H J, et al. Insight into the coprecipitation-controlled crystallization reaction for preparing lithium-layered oxide cathodes[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 717-726. |
13 | RYU H H, PARK N Y, NOH T C, et al. Microstrain alleviation in high-energy Ni-rich NCMA cathode for long battery life[J]. ACS Energy Letters, 2021, 6(1): 216-223. |
14 | LIANG L W, DU K, PENG Z D, et al. Co-precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries[J]. Electrochimica Acta, 2014, 130: 82-89. |
15 | YANG Y, XU S M, XIE M, et al. Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method: A case of Ni1/3Co1/3Mn1/3(OH)2[J]. Journal of Alloys and Compounds, 2015, 619: 846-853. |
16 | VAN BOMMEL A, DAHN J R. Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia[J]. Chemistry of Materials, 2009, 21(8): 1500-1503. |
17 | RYU H H, PARK N Y, YOON D R, et al. New class of Ni-rich cathode materials Li[NixCoyB1- x- yO2 for next lithium batteries[J]. Advanced Energy Materials, 2020, 10(25): doi: 10.1002/aenm.202000495. |
18 | KWON Y, LEE Y, KIM S O, et al. Conducting polymer coating on a high-voltage cathode based on soft chemistry approach toward improving battery performance[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29457-29466. |
19 | CHEN Z, WANG J, CHAO D L, et al. Hierarchical porous LiNi1/3Co1/3Mn1/3O2 nano-/micro spherical cathode material: Minimized cation mixing and improved Li+ mobility for enhanced electrochemical performance[J]. Scientific Reports, 2016, 6: doi: 10.1038/srep25771. |
20 | XU X, HUO H, JIAN J Y, et al. Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries[J]. Advanced Energy Materials, 2019, 9(15): doi: 10.1002/aenm. 201803963. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[4] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[5] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[6] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[7] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[8] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[9] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[10] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[11] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[12] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[13] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[14] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[15] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||