Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (3): 991-999.doi: 10.19799/j.cnki.2095-4239.2022.0022
Previous Articles Next Articles
Bowen CHEN(), Ruiguang CUI, Yanbin SHEN(), Liwei CHEN
Received:
2022-01-13
Revised:
2022-01-25
Online:
2022-03-05
Published:
2022-03-11
Contact:
Yanbin SHEN
E-mail:bwchen2019@sinano.ac.cn;ybshen2017@sinano.ac.cn
CLC Number:
Bowen CHEN, Ruiguang CUI, Yanbin SHEN, Liwei CHEN. Application of a novel method for characterization of local Young’s modulus in lithium (ion) batteries[J]. Energy Storage Science and Technology, 2022, 11(3): 991-999.
1 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
2 | VERMA P, MAIRE P, NOVÁK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22): 6332-6341. |
3 | ZHANG Y G, DU N, YANG D R. Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries[J]. Nanoscale, 2019, 11(41): 19086-19104. |
4 | WANG A, KADAM S, LI H, et al. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries[J]. npj Computational Materials, 2018, 4: doi: 10.1038/S41524-018-0064-0. |
5 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
6 | AGUBRA V A, FERGUS J W. The formation and stability of the solid electrolyte interface on the graphite anode[J]. Journal of Power Sources, 2014, 268: 153-162. |
7 | LIN X D, GU Y, SHEN X R, et al. Correction: An oxygen-blocking oriented multifunctional solid-electrolyte interphase as a protective layer for a lithium metal anode in lithium-oxygen batteries[J]. Energy & Environmental Science, 2021: 1439-1448. |
8 | PELED E, MENKIN S. Review—SEI: Past, present and future[J]. Journal of the Electrochemical Society, 2017, 164(7): A1703-A1719. |
9 | LI N W, YIN Y X, YANG C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials, 2016, 28(9): 1853-1858. |
10 | ZHANG Y J, WANG G Y, TANG L, et al. Stable lithium metal anodes enabled by inorganic/organic double-layered alloy and polymer coating[J]. Journal of Materials Chemistry A, 2019, 7(44): 25369-25376. |
11 | ZHOU Y F, SU M, YU X F, et al. Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery[J]. Nature Nanotechnology, 2020, 15(3): 224-230. |
12 | GU Y, WANG W W, LI Y J, et al. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes[J]. Nature Communications, 2018, 9: doi: 10.1038/S41467-018-03466-8. |
13 | ŠKORO G P, BENNETT J R J, EDGECOCK T R, et al. Dynamic Young's moduli of tungsten and tantalum at high temperature and stress[J]. Journal of Nuclear Materials, 2011, 409(1): 40-46. |
14 | ZHU K, LI C F, ZHU Z G, et al. Measurement of the dynamic Young's modulus of porous titanium and Ti6Al4V[J]. Journal of Materials Science, 2007, 42(17): 7348-7353. |
15 | HOLLMAN P, LARSSON M, HEDENQVIST P, et al. Tensile testing as a method for determining the Young's modulus of thin hard coatings[J]. Surface and Coatings Technology, 1997, 90(3): 234-238. |
16 | BUTT H J, CAPPELLA B, KAPPL M. Force measurements with the atomic force microscope: Technique, interpretation and applications[J]. Surface Science Reports, 2005, 59(1/2/3/4/5/6): 1-152. |
17 | RICO F, ROCA-CUSACHS P, GAVARA N, et al. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 72: doi: 10.1103/PhysRev.72.021914. |
18 | CAPPELLA B, DIETLER G. Force-distance curves by atomic force microscopy[J]. Surface Science Reports, 1999, 34(1/2/3): 1-104. |
19 | FERENCZ R, SANCHEZ J, BLÜMICH B, et al. AFM nanoindentation to determine Young's modulus for different EPDM elastomers[J]. Polymer Testing, 2012, 31(3): 425-432. |
20 | MIYAKE K, SATOMI N, SASAKI S. Elastic modulus of polystyrene film from near surface to bulk measured by nanoindentation using atomic force microscopy[J]. Applied Physics Letters, 2006, 89(3): doi: 10.1063/1.2234648. |
21 | OYEN M L. Mechanical characterisation of hydrogel materials[J]. International Materials Reviews, 2014, 59(1): 44-59. |
22 | HU C L, LI Z J. A review on the mechanical properties of cement-based materials measured by nanoindentation[J]. Construction and Building Materials, 2015, 90: 80-90. |
23 | BOWEN W R, LOVITT R W, WRIGHT C J. Application of atomic force microscopy to the study of micromechanical properties of biological materials[J]. Biotechnology Letters, 2000, 22: 893-903. |
24 | ZHANG J, WANG R, YANG X C, et al. Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy[J]. Nano Letters, 2012, 12(4): 2153-2157. |
25 | LIU J, ZHOU J Q, WANG M F, et al. A functional-gradient-structured ultrahigh modulus solid polymer electrolyte for all-solid-state lithium metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(42): 24477-24485. |
26 | SHIN H, PARK J, HAN S, et al. Component-/structure-dependent elasticity of solid electrolyte interphase layer in Li-ion batteries: Experimental and computational studies[J]. Journal of Power Sources, 2015, 277: 169-179. |
27 | YOON I, JURNG S, ABRAHAM D P, et al. Measurement of mechanical and fracture properties of solid electrolyte interphase on lithium metal anodes in lithium ion batteries[J]. Energy Storage Materials, 2020, 25: 296-304. |
28 | YUAN S Y, WENG S T, WANG F, et al. Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition[J]. Nano Energy, 2021, 83: doi: 10.1016/j.nanoen.2021.105847. |
29 | GAO Y, DU X Q, HOU Z, et al. Unraveling the mechanical origin of stable solid electrolyte interphase[J]. Joule, 2021, 5(7): 1860-1872. |
30 | ZHANG J, YANG X C, WANG R, et al. Influences of additives on the formation of a solid electrolyte interphase on MnO electrode studied by atomic force microscopy and force spectroscopy[J]. The Journal of Physical Chemistry C, 2014, 118(36): 20756-20762. |
31 | WANG M Q, HUAI L Y, HU G H, et al. Effect of LiFSI concentrations to form thickness- and modulus-controlled SEI layers on lithium metal anodes[J]. The Journal of Physical Chemistry C, 2018, 122(18): 9825-9834. |
32 | ZHENG J Y, LIU J L, WANG S J, et al. Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study[J]. Chinese Physics B, 2020, 29(4): doi: 10.1088/1674-1056/a67654. |
33 | LEE H, SHIN W, CHOI J W, et al. Nanomechanical properties of lithiated Si nanowires probed with atomic force microscopy[J]. Journal of Physics D: Applied Physics, 2012, 45(27): doi: 10.1088/0022-3727/45/27/275301. |
34 | ZHENG J Y, ZHENG H, WANG R, et al. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries[J]. Physical Chemistry Chemical Physics: PCCP, 2014, 16(26): 13229-13238. |
35 | SONG Y X, WAN J, GUO H J, et al. Insights into evolution processes and degradation mechanisms of anion-tunable interfacial stability in all-solid-state lithium-sulfur batteries[J]. Energy Storage Materials, 2021, 41: 642-649. |
36 | ZHANG H T, WANG D Y, SHEN C. In-situ EC-AFM and ex-situ XPS characterization to investigate the mechanism of SEI formation in highly concentrated aqueous electrolyte for Li-ion batteries[J]. Applied Surface Science, 2020, 507: doi: 10.1016/j.apsusc.2019.145059. |
37 | PROKSCH R, REVENKO I, HOHLBAUCH S, et al. AM-FM and loss tangent imaging two new high speed and high resolution tools for measuring quantitative nanomechanical properties[C]//NSTZ nanotechnology Conference and EXPO, santa clara CA, USA, 2012, 2012: 27-30. |
38 | LABUDA A, KOCUŃ M, MEINHOLD W, et al. Generalized Hertz model for bimodal nanomechanical mapping[J]. Beilstein Journal of Nanotechnology, 2016, 7: 970-982. |
39 | KOCUN M, LABUDA A, MEINHOLD W, et al. Fast, high resolution, and wide modulus range nanomechanical mapping with bimodal tapping mode[J]. ACS Nano, 2017, 11(10): 10097-10105. |
40 | AMO C A, PERRINO A P, PAYAM A F, et al. Mapping elastic properties of heterogeneous materials in liquid with angstrom-scale resolution[J]. ACS Nano, 2017, 11(9): 8650-8659. |
41 | LABUDA A, HOHLBAUCH S, KOCUN M, et al. Tapping mode AFM imaging in liquids with blueDrive photothermal excitation[J]. Microscopy Today, 2018, 26(6): 12-17. |
42 | MAHANI Z N, TAJVIDI M. Viscoelastic mapping of spruce-polyurethane bond line area using AM-FM atomic force microscopy[J]. International Journal of Adhesion and Adhesives, 2017, 79: 59-66. |
43 | AL-REKABI Z, CONTERA S. Multifrequency AFM reveals lipid membrane mechanical properties and the effect of cholesterol in modulating viscoelasticity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(11): 2658-2663. |
44 | HUANG L J, ZHANG X Y, SHAO J, et al. Nanoscale chemical and mechanical heterogeneity of human dentin characterized by AFM-IR and bimodal AFM[J]. Journal of Advanced Research, 2020, 22: 163-171. |
45 | ANTUNES A, POPELKA A, ALJAROD O, et al. Effects of rutile-TiO2 nanoparticles on accelerated weathering degradation of poly(lactic acid)[J]. Polymers, 2020, 12(5): doi: 10.3390/polym12051096. |
46 | NASSAR R, WONG E, BUI J M, et al. Mechanical anisotropy in GNNQQNY amyloid crystals[J]. The Journal of Physical Chemistry Letters, 2018, 9(17): 4901-4909. |
47 | JIANG H, PENG H, GUO H, et al. Interfacial mechanical strength enhancement for high-performance ZnS thin-film anodes[J]. ACS Applied Materials & Interfaces, 2020, 12(46): 51344-51356. |
48 | YANG S, WU J X, YAN B G, et al. Nanoscale characterization of charged/discharged lithium-rich thin film cathode by scanning probe microscopy techniques[J]. Journal of Power Sources, 2017, 352: 9-17. |
49 | EBELING D, SOLARES S D. Bimodal atomic force microscopy driving the higher eigenmode in frequency-modulation mode: Implementation, advantages, disadvantages and comparison to the open-loop case[J]. Beilstein Journal of Nanotechnology, 2013, 4: 198-207. |
50 | ELLIS B, SMITH R. Polymers: A property database[M. 2nd ed. Boca Raton: CRC Press, 2008 |
51 | TORRES J M, STAFFORD C M, VOGT B D. Manipulation of the elastic modulus of polymers at the nanoscale: Influence of UV-ozone cross-linking and plasticizer[J]. ACS Nano, 2010, 4(9): 5357-5365. |
52 | ALLEN R A, WARD I M, BASHIR Z. An investigation into the possibility of measuring an 'X-ray modulus' and new evidence for hexagonal packing in polyacrylonitrile[J]. Polymer, 1994, 35(10): 2063-2071. |
[1] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[2] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[3] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[4] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[5] | WU Yida, ZHANG Yi, ZHAN Yuanjie, GUO Yaqi, ZHANG liao, LIU Xingjiang, YU Hailong, ZHAO Wenwu, HUANG Xuejie. The effect of B2O3 modification on the electrochemical properties of LiCoO2 cathode [J]. Energy Storage Science and Technology, 2022, 11(6): 1687-1692. |
[6] | Suhang WANG, Jianlin LI, Yaxin LI, Junjie XIONG, Wei ZENG. Research on charging strategy of lithium-ion battery system at low temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. |
[7] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
[8] | Xiang WANG, Jing XU, Yajun DING, Fan DING, Xin XU. Optimal design of liquid cooling pipeline for battery module based on VCALB [J]. Energy Storage Science and Technology, 2022, 11(2): 547-552. |
[9] | Yingkai WANG, Hong ZHANG, Xinghui WANG. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health [J]. Energy Storage Science and Technology, 2022, 11(1): 240-245. |
[10] | Zhiguo AN, Xian ZHANG, Hui ZHU, Chunjie ZHANG. Heat dissipation performance of honeycomb-like thermal management system combined CPCM with water cooling for lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 211-220. |
[11] | Xinyu CAO, Fei PENG, Liwei LI, Jianguang YIN. SOC estimation of lithium battery based on IBAS-NARX neural network model [J]. Energy Storage Science and Technology, 2021, 10(6): 2342-2351. |
[12] | Jianjiang XIE, Xiang GAO, Chengqiang XIA, Yi ZHENG, Hao WANG. Research on information acquisition system of lithium battery energy storage cabin [J]. Energy Storage Science and Technology, 2021, 10(3): 1109-1116. |
[13] | Miao JIANG, Hongli WAN, Gaozhan LIU, Wei WENG, Chao WANG, Xiayin YAO. Co0.1Fe0.9S2@Li7P3S11composite cathode material for all-solid-state lithium batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 925-930. |
[14] | Chengxin SHAN, Liwei LI, Yuxin YANG. SOC of estimation of lithium battery based on IACO-PF [J]. Energy Storage Science and Technology, 2021, 10(3): 1145-1152. |
[15] | Haobin LIANG, Jianhua DU, Xin HAO, Shizhi YANG, Ran TU, Rencheng ZHANG. A review of current research on the formation mechanism of lithium batteries [J]. Energy Storage Science and Technology, 2021, 10(2): 647-657. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||