Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (3): 982-990.doi: 10.19799/j.cnki.2095-4239.2021.0464
Previous Articles Next Articles
Zan DUAN(), Lingfang LI(), Penghui LIU, Dongfang XIAO
Received:
2021-09-04
Revised:
2021-09-23
Online:
2022-03-05
Published:
2022-03-11
Contact:
Lingfang LI
E-mail:yourvicky@126.com
CLC Number:
Zan DUAN, Lingfang LI, Penghui LIU, Dongfang XIAO. Review on advanced preparation methods and energy storage mechanism of MXenes as energy storage materials[J]. Energy Storage Science and Technology, 2022, 11(3): 982-990.
1 | NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253. |
2 | SHUCK C E, GOGOTSI Y. Taking MXenes from the lab to commercial products[J]. Chemical Engineering Journal, 2020, 401: doi: 10.1016/j.cej.2020.125786. |
3 | KRISHNA Y, SAIDUR R, ASLFATTAHI N, et al. Enhancing the thermal properties of organic phase change material (palmitic acid) by doping MXene nanoflakes[J]. AIP Conference Proceedings, 2020, 2233(1): doi: 10.1063/5.0001366. |
4 | ASLFATTAHI N, SAIDUR R, ARIFUTZZAMAN A, et al. Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocomposites[J]. Journal of Energy Storage, 2020, 27: doi: 10.1016/j.est.2019.101115. |
5 | LEONG K Y, CHEW S P, GURUNATHAN B A, et al. An experimental approach to investigate thermal performance of paraffin wax and 1-hexadecanol based heat sinks for cooling of electronic system[J]. International Communications in Heat and Mass Transfer, 2019, 109: doi: 10.1016/j.icheatmasstransfer.2019.104365. |
6 | NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992-1005. |
7 | ANASORI B, DAHLQVIST M, HALIM J, et al. Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3[J]. Journal of Applied Physics, 2015, 118(9): doi: 10.1063/1.4929640. |
8 | SZUPLEWSKA A, KULPIŃSKA D, DYBKO A, et al. Future applications of MXenes in biotechnology, nanomedicine, and sensors[J]. Trends in Biotechnology, 2020, 38(3): 264-279. |
9 | ZHANG Y J, LAN J H, WANG L, et al. Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: A first-principles study[J]. Journal of Hazardous Materials, 2016, 308: 402-410. |
10 | RONCHI R M, ARANTES J T, SANTOS S F. Synthesis, structure, properties and applications of MXenes: Current status and perspectives[J]. Ceramics International, 2019, 45(15): 18167-18188. |
11 | 补淇, 胡静, 雷鑫, 等. Ti3C2Tx MXene/聚乙烯醇复合材料的介电性能[J]. 复合材料学报, 2021, 38(6): 1922-1928. |
BU Q, HU J, LEI X, et al. Dielectric properties of Ti3C2Tx MXene/polyvinyl alcohol composites[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1922-1928. | |
12 | 杨光, 毛琳, 石志军,等. 可降解的电活性细菌纤维素/MXenes复合水凝胶及制备与应用: CN111303449A[P]. 2020-06-19. |
YANG G, MAO L, SHI Z J, et al. Preparation and application of biodegradable electroactive bacterial cellulose/MXenes composite hydrogel. CN111303449A[P]. 2020-06-19. | |
13 | WEN C Y, ZHU T J, LI X Y, et al. Nanostructured Ni/Ti3C2Tx MXene hybrid as cathode for lithium-oxygen battery[J]. Chinese Chemical Letters, 2020, 31(4): 1000-1003. |
14 | WEI C L, FEI H F, TIAN Y, et al. Scalable construction of SiO/wrinkled MXene composite by a simple electrostatic self-assembly strategy as anode for high-energy lithium-ion batteries[J]. Chinese Chemical Letters, 2020, 31(4): 980-983. |
15 | 孙贺雷, 李云飞, 易荣华, 等. N、B共掺杂MXene复合材料的制备及其电化学性能研究[J]. 储能科学与技术, 2019, 8(1): 130-137. |
SUN H L, LI Y F, YI R H, et al. Preparation and characterization of electrochemical properties of nitrogen and boron co-doped MXene composite materials[J]. Energy Storage Science and Technology, 2019, 8(1): 130-137. | |
16 | CHEN Z, LI X L, WANG D H, et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures[J]. Energy & Environmental Science, 2021, 14(6): 3492-3501. |
17 | RAJAKUMARAN R, ANUPRIYA J, CHEN S M. 2D-Titanium carbide MXene/RGO composite modified electrode for selective detection of carcinogenic residue furazolidone in food and biological samples[J]. Materials Letters, 2021, 297: doi: 10.1016/j.matlet.2021.129979. |
18 | DONG Y F, SHI H D, WU Z S. Hybrid nanostructures: Recent advances and promise of MXene-based nanostructures for high-performance metal ion batteries[J]. Advanced Functional Materials, 2020, 30(47): doi: 10.1002/adfm.202070310. |
19 | ZHANG D, WANG S, LI B, et al. Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes[J]. Advanced Materials, 2019, 31(33): doi: 10.1002/adma.201901820. |
20 | 姚乃元, 仙存妮. 二维过渡金属碳化物或碳氮化物在燃料电池催化剂中的应用研究进展[J]. 储能科学与技术, 2018, 7(4): 631-638. |
YAO N Y, XIAN C N. Research progress of two-dimensional transition metal carbides and carbonitrides materials for fuel-cell catalysts[J]. Energy Storage Science and Technology, 2018, 7(4): 631-638. | |
21 | NAGUIB M, GOGOTSI Y. Synthesis of two-dimensional materials by selective extraction[J]. Accounts of Chemical Research, 2015, 48(1): 128-135. |
22 | LEI J C, KUTANA A, YAKOBSON B I. Predicting stable phase monolayer Mo2C (MXene), a superconductor with chemically-tunable critical temperature[J]. Journal of Materials Chemistry C, 2017, 5(14): 3438-3444. |
23 | HANTANASIRISAKUL K, ALHABEB M, LIPATOV A, et al. Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene[J]. Chemistry of Materials, 2019, 31(8): 2941-2951. |
24 | GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81. |
25 | MASHTALIR O, NAGUIB M, MOCHALIN V N, et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nature Communications, 2013, 4: doi: 10.1038/ncomms2664. |
26 | NAGUIB M, UNOCIC R R, ARMSTRONG B L, et al. Large-scale delamination of multi-layers transition metal carbides and carbonitrides "MXenes"[J]. Dalton Transactions, 2015, 44(20): 9353-9358. |
27 | ABDOLHOSSEINZADEH S, JIANG X T, ZHANG H, et al. Perspectives on solution processing of two-dimensional MXenes[J]. Materials Today, 2021, 48: 214-240. |
28 | XUAN J N, WANG Z Q, CHEN Y Y, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance[J]. Angewandte Chemie (International Ed in English), 2016, 55(47): 14569-14574. |
29 | WANG L B, ZHANG H, WANG B, et al. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process[J]. Electronic Materials Letters, 2016, 12(5): 702-710. |
30 | XIE X H, XUE Y, LI L, et al. Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system[J]. Nanoscale, 2014, 6(19): 11035-11040. |
31 | URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)[J]. Nanoscale, 2016, 8(22): 11385-11391. |
32 | HALIM J, KOTA S, LUKATSKAYA M R, et al. Synthesis and characterization of 2D molybdenum carbide (MXene)[J]. Advanced Functional Materials, 2016, 26(18): 3118-3127. |
33 | WU Y T, NIE P, WU L Y, et al. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries[J]. Chemical Engineering Journal, 2018, 334: 932-938. |
34 | ASLAM M K, ALGARNI T S, JAVED M S, et al. 2D MXene materials for sodium ion batteries: A review on energy storage[J]. Journal of Energy Storage, 2021, 37: doi: 10.1016/j.est.2021.102478. |
35 | NAN J X, GUO X, XIAO J, et al. Nanoengineering of 2D MXene-based materials for energy storage applications[J]. Small, 2021, 17(9): doi: 10.1002/smll.201902085. |
36 | LU M, HAN W J, LI H B, et al. There is plenty of space in the MXene layers: The confinement and fillings[J]. Journal of Energy Chemistry, 2020, 48: 344-363. |
37 | LUO J M, ZHANG W K, YUAN H D, et al. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors[J]. ACS Nano, 2017, 11(3): 2459-2469. |
38 | YAN J, REN C G, MALESKI K, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance[J]. Advanced Functional Materials, 2017, 27(30): doi: 10.1002/adfm.201701264. |
39 | LU M, HAN W J, LI H J, et al. Tent-pitching-inspired high-valence period 3-cation pre-intercalation excels for anode of 2D titanium carbide (MXene) with high Li storage capacity[J]. Energy Storage Materials, 2019, 16: 163-168. |
40 | LI K, LIANG M Y, WANG H, et al. 3D MXene architectures for efficient energy storage and conversion[J]. Advanced Functional Materials, 2020, 30(47): doi: 10.1002/adfm.202000842. |
41 | TIAN Y P, YANG C H, QUE W X, et al. Ni foam supported quasi-core-shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors[J]. Journal of Power Sources, 2017, 369: 78-86. |
42 | GUO J, ZHAO Y Y, LIU A M, et al. Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor[J]. Electrochimica Acta, 2019, 305: 164-174. |
43 | HU M, LI Z, ZHANG H, et al. Self-assembled Ti3C2Tx MXene film with high gravimetric capacitance[J]. Chemical Communications (Cambridge, England), 2015, 51(70): 13531-13533. |
44 | TANG Y, YANG C H, YANG Y W, et al. Three dimensional hierarchical network structure of S-NiFe2O4 modified few-layer titanium carbides (MXene) flakes on nickel foam as a high efficient electrocatalyst for oxygen evolution[J]. Electrochimica Acta, 2019, 296: 762-770. |
45 | SONG D K, LI X F, LI X P, et al. Hollow-structured MXene-PDMS composites as flexible, wearable and highly bendable sensors with wide working range[J]. Journal of Colloid and Interface Science, 2019, 555: 751-758. |
46 | ZHAO X, ZHA X J, PU J H, et al. Macroporous three-dimensional MXene architectures for highly efficient solar steam generation[J]. Journal of Materials Chemistry A, 2019, 7(17): 10446-10455. |
47 | WANG Y, YANG J, CHEN Z F, et al. A new flexible and ultralight carbon foam/Ti3C2Tx MXene hybrid for high-performance electromagnetic wave absorption[J]. RSC Advances, 2019, 9(70): 41038-41049. |
48 | YUE Y, LIU N S, LIU W J, et al. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor[J]. Nano Energy, 2018, 50: 79-87. |
49 | LI X P, LI Y, LI X F, et al. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets[J]. Journal of Colloid and Interface Science, 2019, 542: 54-62. |
50 | WANG Q, WANG S L, GUO X H, et al. MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life[J]. Advanced Electronic Materials, 2019, 5(12): doi: 10.1002/aelm.201900537. |
51 | ZHOU Z H, PANATDASIRISUK W, MATHIS T S, et al. Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage[J]. Nanoscale, 2018, 10(13): 6005-6013. |
52 | YANG K, YIN F, XIA D, et al. A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range[J]. Protein Expression and Purification, 2019, 11(20): 9949-9957. |
53 | LI K, WANG X, LI S, et al. An ultrafast conducting Polymer@MXene positive electrode with high volumetric capacitance for advanced asymmetric supercapacitors[J]. Small, 2020, 16(4): doi: 10.1002/smll.201906851. |
54 | LUKATSKAYA M R, KOTA S, LIN Z F, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy, 2017, 2: doi: 10.1038/nenergy.2017.105. |
55 | ZHAO S, ZHANG H B, LUO J Q, et al. Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances[J]. ACS Nano, 2018, 12(11): 11193-11202. |
56 | LIU J, ZHANG H B, SUN R H, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding[J]. Advanced Materials, 2017, 29(38): doi: 10.1002/adma.201702367. |
57 | YUAN W J, YANG K, PENG H F, et al. A flexible VOCs sensor based on a 3D Mxene framework with a high sensing performance[J]. Journal of Materials Chemistry A, 2018, 6(37): 18116-18124. |
58 | JUN B M, KIM S, HEO J, et al. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications[J]. Nano Research, 2019, 12(3): 471-487. |
59 | ZHANG X, ZHANG Z H, ZHOU Z. MXene-based materials for electrochemical energy storage[J]. Journal of Energy Chemistry, 2018, 27(1): 73-85. |
60 | MA Z Y, ZHOU X F, DENG W, et al. 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 3634-3643. |
61 | TANG Q, ZHOU Z, SHEN P W. Are MXenes promising anode materials for Li ion batteries? computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) monolayer[J]. Journal of the American Chemical Society, 2012, 134(40): 16909-16916. |
62 | KARLSSON L H, BIRCH J, HALIM J, et al. Atomically resolved structural and chemical investigation of single MXene sheets[J]. Nano Letters, 2015, 15(8): 4955-4960. |
63 | GUO J X, PENG Q M, FU H, et al. Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations[J]. The Journal of Physical Chemistry C, 2015, 119(36): 20923-20930. |
64 | ZHOU J, ZHA X H, ZHOU X B, et al. Synthesis and electrochemical properties of two-dimensional hafnium carbide[J]. ACS Nano, 2017, 11(4): 3841-3850. |
65 | XIE Y, NAGUIB M, MOCHALIN V N, et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides[J]. Journal of the American Chemical Society, 2014, 136(17): 6385-6394. |
66 | ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2: doi: 10.1038/natrevmats.2016.98. |
67 | GHIDIU M, HALIM J, KOTA S, et al. Ion-exchange and cation solvation reactions in Ti3C2 MXene[J]. Chemistry of Materials, 2016, 28(10): 3507-3514. |
68 | XIE Y, DALL'AGNESE Y, NAGUIB M, et al. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries[J]. ACS Nano, 2014, 8(9): 9606-9615. |
[1] | Tiezhu GUO, Di ZHOU, Chuanfang ZHANG. Strategies for improving MXene colloidal stability and impact on their supercapacitor performance [J]. Energy Storage Science and Technology, 2022, 11(4): 1165-1174. |
[2] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[3] | Yuexia LI, Quanbing LIU. Application of MXene-based nanomaterials in electrocatalysis for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 1918-1930. |
[4] | Yanming CUI, Zhihua ZHANG, Yuanqiao HUANG, Jiu LIN, Xiayin YAO, Xiaoxiong XU. Prototype all-solid-state battery electrodes preparation and assembly technology [J]. Energy Storage Science and Technology, 2021, 10(3): 836-847. |
[5] | Tenghui WANG, Guo CHEN, Xuelin YANG. Review of preparations of amorphous nanostructured silicon powder [J]. Energy Storage Science and Technology, 2021, 10(2): 440-447. |
[6] | Zhao LI, Baorang LI, Liu CUI, Xiaoze DU. Stability of the thermal performances of molten salt-based nanofluid [J]. Energy Storage Science and Technology, 2020, 9(6): 1775-1783. |
[7] | Hongming YI, Zhiqiang LYU, Huamin ZHANG, Mingming SONG, Qiong ZHENG, Xianfeng LI. Recent progress and application challenges in V-based polyanionic compounds for cathodes of sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1350-1369. |
[8] | YIN Shaowu1,2, LI Hongkun1, JIA Zhenxiong1, WANG Li1,2, TONG Lige1,2. Experimental study on rapid preparation of ice storage appilications [J]. Energy Storage Science and Technology, 2017, 6(4): 701-707. |
[9] | XIANG Yu, CAO Gaoping. A review on the mechanism of the energy storage about the electrochemical double-layer capacitors #br# [J]. Energy Storage Science and Technology, 2016, 5(6): 816-827. |
[10] | ZHENG Chao1, ZHOU Xufeng2, LIU Zhaoping2, YANG Bin1, JIAO Wangchun1, Fu Guansheng1, RUAN Dianbo1. Preparation of activated graphene/activated carbon dry composite electrode and its application in supercapacitors [J]. Energy Storage Science and Technology, 2016, 5(4): 486-491. |
[11] | ZHOU Zhaohui1, WANG Li2, LI Jiangang1, HE Xiangming2 . Recent advances of elemental phosphorus composite as anode materials for secondary batteries [J]. Energy Storage Science and Technology, 2016, 5(4): 430-435. |
[12] | YUAN Junfei, WU Bin, HU Yun, LI Dezhan, XIE Kai, HONG Xiaobin. Preparation and properties of composite electrolyte [J]. Energy Storage Science and Technology, 2015, 4(4): 417-421. |
[13] | YANG Chao, ZHANG Dong, LI Xiuqiang. Research and application of microencapsulated phase change materials [J]. Energy Storage Science and Technology, 2014, 3(3): 203-209. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||