Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (10): 3209-3220.doi: 10.19799/j.cnki.2095-4239.2022.0093
• Energy Storage System and Engineering • Previous Articles Next Articles
Mengyao QI(), Yichen HOU, Lei CHEN(), Lijun YANG
Received:
2022-02-22
Revised:
2022-03-15
Online:
2022-10-05
Published:
2022-10-10
Contact:
Lei CHEN
E-mail:15128164563@163.com;Leichen@ncepu.edu.cn
CLC Number:
Mengyao QI, Yichen HOU, Lei CHEN, Lijun YANG. Numerical simulation of a novel radial all-vanadium flow battery cell[J]. Energy Storage Science and Technology, 2022, 11(10): 3209-3220.
Table 4
Performance design parameters"
参数 | 符号 | 数值 | 单位 | 来源 |
---|---|---|---|---|
孔隙率 | εp | 0.929 | — | 文献[ |
比表面积 | a | 1.62×104 | m-1 | 文献[ |
碳纤维直径 | dp | 1.76×10-5 | m | 文献[ |
电导率 | σs | 1000 | S/m | 文献[ |
科泽尼-卡尔曼常数 | kCK | 4.28 | — | 文献[ |
黏度 | Μ | 4.928×10-3 | Pa·s | 文献[ |
钒离子初始浓度 | cV | 1500 | mol/m3 | 文献[ |
负极初始质子浓度 | cH_0_neg | 4500 | mol/m3 | 文献[ |
阴极传递系数 | αc | 0.5 | — | 文献[ |
阳极传递系数 | αa | 0.5 | — | 文献[ |
V2+的扩散系数 | 2.4×10-10 | m2/s | 文献[ | |
V3+的扩散系数 | 2.4×10-10 | m2/s | 文献[ | |
水初始浓度 | cH2O | 46500 | mol/m3 | 文献[ |
负极标准反应速率常数 | k_neg | 1.7×10-7 | m/s | 文献[ |
标准平衡电位 | Eeq | -0.255 | V | 文献[ |
1 | 陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用[J]. 储能科学与技术, 2021, 10(5): 1477-1485. |
CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology, 2021, 10(5): 1477-1485. | |
2 | 鲁志颖, 江杉, 李全龙, 等. 全钒液流电池在充电结束搁置阶段的开路电压变化[J]. 储能科学与技术, 2022, 11(7): 2046-2050. |
LU Z Y, JIANG S, LI Q L, et al. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery[J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. | |
3 | 陶文铨. 传热与流动问题的多尺度数值模拟: 方法与应用[M]. 北京: 科学出版社, 2009.TAO W Q. Multiscale numerical simulation of heat transfer and flow problems: Methods and applications[M]. Beijing: Science Press, 2009. |
4 | 李强, 王俊楠, 孙红. 钒液流电池石墨毡电极的MWCNTs-COOH-NS修饰[J]. 储能科学与技术, 2021, 10(6): 2097-2105. |
LI Q, WANG J N, SUN H. Graphite felt electrode modified with MWCNTs-COOH-NS for vanadium flow battery[J]. Energy Storage Science and Technology, 2021, 10(6): 2097-2105. | |
5 | ZHANG Z H, ZHAO T S, BAI B F, et al. A highly active biomass-derived electrode for all vanadium redox flow batteries[J]. Electrochimica Acta, 2017, 248: 197-205. |
6 | ZHANG H Z, ZHANG H M, LI X F, et al. Nanofiltration (NF) membranes: The next generation separators for all vanadium redox flow batteries (VRBs)? [J]. Energy & Environmental Science, 2011, 4(5): 1676. |
7 | ZHANG H Z, ZHANG H M, LI X F, et al. Silica modified nanofiltration membranes with improved selectivity for redox flow battery application[J]. Energy Environ Sci, 2012, 5(4): 6299-6303. |
8 | 王瑄, 叶强. 全钒液流电池电堆局部供液不足导致副反应加剧的现象[J]. 储能科学与技术, 2022, 11(5): 1455-1467. |
WANG X, YE Q. The aggravation of side reactions caused by insufficient localized liquid supply in an all-vanadium redox flow battery stack[J]. Energy Storage Science and Technology, 2022, 11(5): 1455-1467. | |
9 | 曲大为, 杨帆, 范鲁艳, 等. 钒氧化还原流电池技术综述[J]. 吉林大学学报(工学版), 2022, 52(1): 1-24. |
QU D W, YANG F, FAN L Y, et al. Review of vanadium redox flow battery technology[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(1): 1-24. | |
10 | SHRIPAD T R. Chapter six-Chemical energy storage[M]// Hitesh Bindra, Shripad Revankar. Techno-economic Integration of renewable and nuclear energy. United States: Academic Press, 2019: 177-227. |
11 | SHAH A A, WATT-SMITH M J, WALSH F C. A dynamic performance model for redox-flow batteries involving soluble species[J]. Electrochimica Acta, 2008, 53(27): 8087-8100. |
12 | 郭煜石. 钒电池正极电解液物理化学性质及其对稳定性影响机制研究[D]. 沈阳: 沈阳化工大学, 2021. |
GUO Y S. Physical and chemical properties of vanadium battery cathode electrolyte and its influence mechanism on stability[D]. Shenyang: Shenyang University Of Chemical Technology, 2021. | |
13 | LU M Y, DENG Y M, YANG W W, et al. A novel rotary serpentine flow field with improved electrolyte penetration and species distribution for vanadium redox flow battery[J]. Electrochimica Acta, 2020, 361: doi: 10.1016/j. electacta. 2020. 137089. |
14 | YOU X, YE Q, CHENG P. Scale-up of high power density redox flow batteries by introducing interdigitated flow fields[J]. International Communications in Heat and Mass Transfer, 2016, 75: 7-12. |
15 | SUN Z W, DUAN Z N, BAI J Q, et al. Numerical study of the performance of all vanadium redox flow battery by changing the cell structure[J]. Journal of Energy Storage, 2020, 29: doi: 10.1016/j. est. 2020. 101370. |
16 | ALI E, KWON H, KIM J, et al. Numerical study on serpentine design flow channel configurations for vanadium redox flow batteries[J]. Journal of Energy Storage, 2020, 32: doi: 10.1016/j. eat. 2020. 101802. |
17 | SKYLLAS-KAZACOS M, MENICTAS C, LIM T. Redox flow batteries for medium-to large-scale energy storage[M]// Electricity Transmission, Distribution and Storage Systems. Amsterdam: Elsevier, 2013: 398-441. |
18 | KEAR G, SHAH A A, WALSH F C. Development of the all-vanadium redox flow battery for energy storage: A review of technological, financial and policy aspects[J]. International Journal of Energy Research, 2012, 36(11): 1105-1120. |
19 | 邵军康, 李鑫, 莫言青, 等. 全钒液流电池建模与流量特性分析[J]. 储能科学与技术, 2020, 9(2): 645-655. |
SHAO J K, LI X, MO Y Q, et al. Analysis of modeling and flow characteristics of vanadium redox flow battery[J]. Energy Storage Science and Technology, 2020, 9(2): 645-655. | |
20 | ZHOU H T, ZHANG H M, ZHAO P, et al. A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery[J]. Electrochimica Acta, 2006, 51(28): 6304-6312. |
21 | YOU D J, ZHANG H M, CHEN J. A simple model for the vanadium redox battery[J]. Electrochimica Acta, 2009, 54(27): 6827-6836. |
22 | YAMAMURA T, WATANABE N, YANO T, et al. Electron-transfer kinetics of Np3+/Np4+, NpO2 +/NpO2 2+, V2+/V3+, and VO2+/VO2 + at carbon electrodes[J]. Journal of the Electrochemical Society, 2005, 152(4): A830. |
23 | MA X K, ZHANG H M, XING F. A three-dimensional model for negative half cell of the vanadium redox flow battery[J]. Electrochimica Acta, 2011, 58: 238-246. |
24 | SUM E, SKYLLAS-KAZACOS M. A study of the V(II)/V(III) redox couple for redox flow cell applications[J]. Journal of Power Sources, 1985, 15(2/3): 179-190. |
25 | POURBAIX M. Atlas of electrochemical equilibria in aqueous solution[J].National Association of Corrosion Engineers,1974, 307. |
26 | GURIEFF N, CHEUNG C Y, TIMCHENKO V, et al. Performance enhancing stack geometry concepts for redox flow battery systems with flow through electrodes[J]. Journal of Energy Storage, 2019, 22: 219-227. |
[1] | Ao TANG, Chuanwei YAN. Modelling and simulation of flow batteries: Recent progress and prospects [J]. Energy Storage Science and Technology, 2022, 11(9): 2866-2878. |
[2] | Hong LI, Qiang ZHANG. A review of energy storage science and technology projects supported by national key R&D program [J]. Energy Storage Science and Technology, 2022, 11(9): 2691-2701. |
[3] | Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming LIU, Min YAN, Shun TANG, Yuancheng CAO, Shijie CHENG, Weixin ZHANG. Patent analysis of fire-protection technology of lithium-ion energy storage system [J]. Energy Storage Science and Technology, 2022, 11(8): 2664-2670. |
[4] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[5] | Guohui FENG, Tianyu WANG, Gang WANG. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176. |
[6] | Wenlan YE, Ming ZHAO, Mingyu HU, Yang TIAN. Analysis of heat storage and release performance of tube bundle phase change heat accumulator [J]. Energy Storage Science and Technology, 2022, 11(7): 2151-2160. |
[7] | WU Xiaoling, ZHOU Tao, LIU Yuzhao, DU Yanping, CHEN Huiping, LI Shun. Numerical study on cooling enhancement of micro devices by designing turbulence based hollow micro pin-fin arrays with lateral holes [J]. Energy Storage Science and Technology, 2022, 11(6): 1980-1987. |
[8] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[9] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[10] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[11] | Siqi SHI, Zhangwei TU, Xinxin ZOU, Shiyu SUN, Zhengwei YANG, Yue LIU. Applying data-driven machine learning to studying electrochemical energy storage materials [J]. Energy Storage Science and Technology, 2022, 11(3): 739-759. |
[12] | Ang LI, Xiaomeng LI, Lin YANG, Han WANG, Junfan XIANG, Yuhan LIU. Compression force calculation of redox flow battery [J]. Energy Storage Science and Technology, 2022, 11(2): 609-614. |
[13] | Hui TIAN, Dong HUA, Maoli MAN, Chunzhe LIU, Guojun LI, Xiongwen ZHANG. Numerical study on carbon deposition characteristics of planar solid oxide fuel cell [J]. Energy Storage Science and Technology, 2022, 11(1): 291-296. |
[14] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wei CHEN. International development trend analysis of next-generation electrochemical energy storage technology [J]. Energy Storage Science and Technology, 2022, 11(1): 89-97. |
[15] | Xiaoguang ZHANG, Xiaonan PAN, Jinming LI, Li LIU, Yan HE. Effect of battery arrangement on the phase change thermal management performance of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(1): 127-135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||