Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (10): 3200-3208.doi: 10.19799/j.cnki.2095-4239.2022.0030
• Energy Storage System and Engineering • Previous Articles Next Articles
Zhou LYU1(), Bo HE1, Zhenze HUANG2(), Zhiyong LIANG2
Received:
2022-01-14
Revised:
2022-03-01
Online:
2022-10-05
Published:
2022-10-10
Contact:
Zhenze HUANG
E-mail:lvzhoubang@163.com;363611009@qq.com
CLC Number:
Zhou LYU, Bo HE, Zhenze HUANG, Zhiyong LIANG. LE-ELM-based spatiotemporal modeling method of lithium battery thermal process[J]. Energy Storage Science and Technology, 2022, 11(10): 3200-3208.
1 | LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
2 | RAHIMI-EICHI H, BARONTI F, CHOW M Y. Online adaptive parameter identification and state-of-charge coestimation for lithium-polymer battery cells[J]. IEEE Transactions on Industrial Electronics, 2014, 61(4): 2053-2061. |
3 | 缪平, 姚祯, LEMMON John, 等. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3):670-678. |
MIAO P, YAO Z, LEMMON J, et al. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3):670-678. | |
4 | 张志超, 郑莉莉, 杜光超, 等. 锂离子电池充放电过程中产热特性研究综述[J]. 储能科学与技术, 2019, 8(S1): 31-37. |
ZHANG Z C, ZHENG L L, DU G C, et al. Review of research on heat generation characteristics during charging and discharging of lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(S1): 31-37. | |
5 | 徐蒙, 张竹茜, 贾力, 等. 圆柱形锂离子动力电池放电过程电化学与传热特性研究[J]. 中国电机工程学报, 2013, 33(32): 54-61, 5. |
XU M, ZHANG Z Q, JIA L, et al. Study on electrochemical and heat transfer characteristics of cylindrical lithium-ion power battery during discharge cycle[J]. Proceedings of the CSEE, 2013, 33(32): 54-61, 5. | |
6 | LI J, CHENG Y, AI L H, et al. 3D simulation on the internal distributed properties of lithium-ion battery with planar tabbed configuration[J]. Journal of Power Sources, 2015, 293: 993-1005. |
7 | LIN X F, PEREZ H E, MOHAN S, et al. A lumped-parameter electro-thermal model for cylindrical batteries[J]. Journal of Power Sources, 2014, 257: 1-11. |
8 | 陈实, 方凯正, 穆道斌, 等. 神经网络模型在锂离子电池表面温度预测中的应用研究[J]. 北京理工大学学报, 2013, 33(4): 421-424. |
CHEN S, FANG K Z, MU D B, et al. Application of neural network model to predicting surface temperature of lithium-ion battery[J]. Transactions of Beijing Institute of Technology, 2013, 33(4): 421-424. | |
9 | 宋明超, 李国春, 王丽梅, 等. 基于电化学阻抗谱的锂离子电池内部温度估算研究[J]. 农业装备与车辆工程, 2020, 58(5): 56-61. |
SONG M C, LI G C, WANG L M, et al. Estimation of internal temperature of lithium-ion battery based on electrochemical impedance spectroscopy[J]. Agricultural Equipment & Vehicle Engineering, 2020, 58(5): 56-61. | |
10 | PARK H M, CHO D H. The use of the Karhunen-Loève decomposition for the modeling of distributed parameter systems[J]. Chemical Engineering Science, 1996, 51(1): 81-98. |
11 | CHRISTOFIDES P D, CHOW J. Nonlinear and robust control of PDE systems: Methods and applications to transport-reaction processes[J]. Applied Mechanics Reviews, 2002, 55(2): B29-B30. |
12 | QI C K, LI H X, ZHANG X X, et al. Time/Space-separation-based SVM modeling for nonlinear distributed parameter processes[J]. Industrial & Engineering Chemistry Research, 2011, 50(1): 332-341. |
13 | LU X J, ZOU W, HUANG M H. An adaptive modeling method for time-varying distributed parameter processes with curing process applications[J]. Nonlinear Dynamics, 2015, 82(1/2): 865-876. |
14 | LIU Z, LI H X. Extreme learning machine based spatiotemporal modeling of lithium-ion battery thermal dynamics[J]. Journal of Power Sources, 2015, 277: 228-238. |
15 | WANG M L, LI H X. Real-time estimation of temperature distribution for cylindrical lithium-ion batteries under boundary cooling[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2316-2324. |
16 | BALACHANDAR S. Turbulence, coherent structures, dynamical systems and symmetry[J]. AIAA Journal, 1998, 36(3): 496. |
17 | ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326. |
18 | PRABHAKAR S K, RAJAGURU H. Expectation maximization based PCA and hessian LLE with suitable post classifiers for epilepsy classification from EEG signals[C]//Proceedings of the Eighth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2016), 2018: 364-374. |
19 | BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[M/OL]//Advances in Neural Information Processing Systems 14. The MIT Press, 2002: https://doi.org/10.7551/mitpress/1120.003.0080 . |
20 | KIM U S, SHIN C B, KIM C S. Modeling for the scale-up of a lithium-ion polymer battery[J]. Journal of Power Sources, 2009, 189(1): 841-846. |
21 | WU B, YUFIT V, MARINESCU M, et al. Coupled thermal-electrochemical modelling of uneven heat generation in lithium-ion battery packs[J]. Journal of Power Sources, 2013, 243: 544-554. |
22 | BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396. |
23 | 王秀峰, 卢桂章. 系统建模与辨识[M]. 北京: 电子工业出版社, 2004. |
WANG X F, LU G Z. System modeling and identificatio [M]. Beijing: Publishing House of Electronics Industry, 2004. | |
24 | HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501. |
25 | HUANG G B, WANG D H, LAN Y. Extreme learning machines: A survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2): 107-122. |
26 | LU X J, ZHOU C, HUANG M H, et al. Regularized online sequential extreme learning machine with adaptive regulation factor for time-varying nonlinear system[J]. Neurocomputing, 2016, 174: 617-626. |
27 | HUANG G B, ZHOU H M, DING X J, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics Part B(Cybernetics), 2012, 42(2): 513-529. |
[1] | Tao SUN, Tengteng SHEN, Xin LIU, Dongsheng REN, Jinhai LIU, Yuejiu ZHENG, Luyan WANG, Languang LU, Minggao OUYANG. Application of titration gas chromatography technology in the quantitative detection of lithium plating in Li-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2564-2573. |
[2] | XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. |
[3] | Jun WANG, Lin RUAN, Yanliang QIU. Research progress on rapid heating methods for lithium-ion battery in low-temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574. |
[4] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[5] | Siqi LYU, Na LI, Haosen CHEN, Shuqiang JIAO, Weili SONG. Progresses in visualization and quantitative analysis of the electrode process in rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 795-817. |
[6] | Zihan YUAN, Xiao YAN, Tao YANG. Quantitative analysis of key battery performance parameters of aging lithium battery module [J]. Energy Storage Science and Technology, 2022, 11(1): 221-227. |
[7] | Heng LUO, Xiao YAN, Qin WANG, Bo HU. Charging and discharging strategy of battery energy storage in the charging station with the presence of photovoltaic [J]. Energy Storage Science and Technology, 2022, 11(1): 275-282. |
[8] | Suxia SHAO, Zhendong ZHU, Wen PENG, Juan DAI, Hao WU. Variation and mechanism of lithium-ion concentration in the liquid phase during charging and discharging cycles [J]. Energy Storage Science and Technology, 2021, 10(3): 1187-1195. |
[9] | Qiang CHEN, Min LI, Jingfa LI. Application of Prussian blue analogs and their derivatives in potassium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 1002-1015. |
[10] | Zhendong ZHU, Huanhuan WU, Zheng ZHANG, Wen PENG, Lijuan LI. Analysis of lithium plating-stripping process in lithium-ion batteries by three-electrode measurements [J]. Energy Storage Science and Technology, 2021, 10(2): 448-453. |
[11] | Weixia LIU, Xun TIAN, Jiayong XIAO, Wei CHANG, Yuan LI, Liang MAO. Estimation of SOH and remaining life of lithium batteries based on a combination model and long short-term memory [J]. Energy Storage Science and Technology, 2021, 10(2): 689-694. |
[12] | Jingjing ZHANG, Xiaoling CUI, Dongni ZHAO, Li YANG, Jie WANG. Effects of concentrated electrolytes on the electrode /electrolyte interface [J]. Energy Storage Science and Technology, 2021, 10(1): 143-149. |
[13] | Yiquan WANG, Bixiong HUANG, Xiao YAN, Xintian LIU, Ying WANG, Shuangyu LIU, Huayuan XU. SOC estimation method of power battery based on LSTM-DaNN [J]. Energy Storage Science and Technology, 2020, 9(6): 1969-1975. |
[14] | Kaijie YANG, Houju PEI, Xinlong ZHU, Yitao ZOU, Junyi WANG, Hong SHI. Research and optimization of thermal design of a container energy storage battery pack [J]. Energy Storage Science and Technology, 2020, 9(6): 1858-1863. |
[15] | Xuhao LI, Yu ZHOU, Bingchuan WANG. Modeling and simulation experiments of temperature-coupled mechanism model for lithium-ion battery [J]. Energy Storage Science and Technology, 2020, 9(6): 1991-1999. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||