1 |
ARRHENIUS S. On the reaction rate of the inversion of non-refined sugar upon souring[J]. Zeitschrift fur Physikalische Chemie, 1889, 4: 226.
|
2 |
TAFEL J. Über Die polarisation Bei kathodischer wasserstoffentwicklung[J]. Zeitschrift Für Physikalische Chemie, 1905, 50U(1): 641-712.
|
3 |
BUTLER J A. Studies in heterogeneous equilibria. Part II.—The kinetic interpretation of the Nernst theory of electromotive force[J]. Transactions of the Faraday Society, 1924, 19: 729-733.
|
4 |
ERDEY-GRÚZ T, VOLMER M. Zur theorie der wasserstoff überspannung[J]. Zeitschrift Für Physikalische Chemie, 1930, 150A(1): 203-213.
|
5 |
FRUMKIN A. Wasserstoffüberspannung und struktur der doppelschicht[J]. Zeitschrift Für Physikalische Chemie, 1933, 164: 121-133.
|
6 |
BOCKRIS J O, POTTER E C. The mechanism of the cathodic hydrogen evolution reaction[J]. Journal of the Electrochemical Society, 1952, 99(4): 169-186.
|
7 |
GRAHAME D C. Properties of the electrical double layer at a mercury surface. I. Methods of measurement and interpretation of results[J]. Journal of the American Chemical Society, 1941, 63(5): 1207-1215.
|
8 |
LEVICH V. The theory of concentration overpotential[J]. Acta Physicochim URSS, 1942, 17: 257-307.
|
9 |
LIBBY W F. The potential usefulness of natural tritium[J]. Proceedings of the National Academy of Sciences of the United States of America, 1953, 39(4): 245-247.
|
10 |
MARCUS R A. On the theory of oxidation-reduction reactions involving electron transfer. I[J]. The Journal of Chemical Physics, 1956, 24(5): 966-978.
|
11 |
ŠEVČÍK A. Oscillographic polarography with periodical triangular voltage[J]. Collection of Czechoslovak Chemical Communications, 1948, 13: 349-377.
|
12 |
GERISCHER H. Kinetik der entladung einfacher und komplexer zink-ionen[J]. Zeitschrift Für Physikalische Chemie, 1953, 202(1): 302-317.
|
13 |
GERISCHER H. Über den ablauf von redoxreaktionen an metallen und an halbleitern[J]. Zeitschrift Für Physikalische Chemie, 1960, 26(3/4): 223-247.
|
14 |
CALEF D F, WOLYNES P G. Classical solvent dynamics and electron transfer. II. Molecular aspects[J]. The Journal of Chemical Physics, 1983, 78(1): 470-482.
|
15 |
DE LEVIE R. On porous electrodes in electrolyte solutions: I. Capacitance effects[J]. Electrochimica Acta, 1963, 8(10): 751-780.
|
16 |
ABADA S, MARLAIR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries: A review[J]. Journal of Power Sources, 2016, 306: 178-192.
|
17 |
TU J G, SONG W L, LEI H P, et al. Nonaqueous rechargeable aluminum batteries: Progresses, challenges, and perspectives[J]. Chemical Reviews, 2021, 121(8): 4903-4961.
|
18 |
LIANG C P, LONGO R C, KONG F T, et al. Obstacles toward unity efficiency of LiNi1-2 xCoxMnxO2 (x = 0~1/3) (NCM) cathode materials: Insights from ab initio calculations[J]. Journal of Power Sources, 2017, 340: 217-228.
|
19 |
ZHANG C Y, HE R, ZHANG J C, et al. Amorphous carbon-derived nanosheet-bricked porous graphite as high-performance cathode for aluminum-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(31): 26510-26516.
|
20 |
VON LÜDERS C, KEIL J, WEBERSBERGER M, et al. Modeling of lithium plating and lithium stripping in lithium-ion batteries[J]. Journal of Power Sources, 2019, 414: 41-47.
|
21 |
KRAUSKOPF T, RICHTER F H, ZEIER W G, et al. Physicochemical concepts of the lithium metal anode in solid-state batteries[J]. Chemical Reviews, 2020, 120(15): 7745-7794.
|
22 |
BOYLE D T, KONG X, PEI A, et al. Transient voltammetry with ultramicroelectrodes reveals the electron transfer kinetics of lithium metal anodes[J]. ACS Energy Letters, 2020, 5(3): 701-709.
|
23 |
PAN C J, YUAN C Z, ZHU G Z, et al. An operando X-ray diffraction study of chloroaluminate anion-graphite intercalation in aluminum batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(22): 5670-5675.
|
24 |
GIFFORD P R, PALMISANO J B. An aluminum/chlorine rechargeable cell employing a room temperature molten salt electrolyte[J]. Journal of the Electrochemical Society, 1988, 135(3): 650-654.
|
25 |
MAMANTOV G, TORSI G. Potentiometric study of the dissociation of the tetrachloroaluminate ion in molten sodium chloroaluminates at 175-400.deg[J]. Inorganic Chemistry, 1971, 10(9): 1900-1902.
|
26 |
KARPINSKI Z J, OSTERYOUNG R A. Potentiometric studies of the chlorine electrode in ambient-temperature chloroaluminate ionic liquids: Determination of equilibrium constants for tetrachloroaluminate ion dissociation[J]. Inorganic Chemistry, 1985, 24(14): 2259-2264.
|
27 |
HONG Y S, LI N, CHEN H S, et al. In operando observation of chemical and mechanical stability of Li and Na dendrites under quasi-zero electrochemical field[J]. Energy Storage Materials, 2018, 11: 118-126.
|
28 |
SHE D M, SONG W L, HE J, et al. Erratum: surface evolution of aluminum electrodes in non-aqueous aluminum batteries[J]. Journal of the Electrochemical Society, 2020, 167(14): doi: 10.1149/1945-7111/abbb09.
|
29 |
BAO Y H, HAN Y, YANG L, et al. Bioinspired controllable electro-chemomechanical coloration films[J]. Advanced Functional Materials, 2019, 29(2): doi: 10.1002/adfm.201806383.
|
30 |
CHEN H S, HAN Y, YANG L, et al. A method for analyzing two-dimensional lithium ion concentration in the nano silicon films[J]. Applied Physics Letters, 2019, 115(26): doi: 10.1063/1.5132578.
|
31 |
HAN X, LI S J, SONG W L, et al. Stable high-capacity organic aluminum-porphyrin batteries[J]. Advanced Energy Materials, 2021, 11(32): doi: 10.1002/aenm.202101446.
|
32 |
HAN D, CAO M S, LI N, et al. Initial electrode kinetics of anion intercalation and de-intercalation in nonaqueous Al-graphite batteries[J]. Chinese Journal of Chemistry, 2021, 39(1): 157-164.
|
33 |
YU Z J, JIAO S Q, LI S J, et al. Flexible stable solid-state Al-ion batteries[J]. Advanced Functional Materials, 2019, 29(1): doi: 10.1002/adfm.201806799.
|
34 |
DONG K, MARKÖTTER H, SUN F, et al. In situ and operando tracking of microstructure and volume evolution of silicon electrodes by using synchrotron X-ray imaging[J]. ChemSusChem, 2019, 12(1): 261-269.
|
35 |
EBNER M, MARONE F, STAMPANONI M, et al. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries[J]. Science, 2013, 342(6159): 716-720.
|
36 |
RAHE C, KELLY S T, RAD M N, et al. Nanoscale X-ray imaging of ageing in automotive lithium ion battery cells[J]. Journal of Power Sources, 2019, 433: doi: 10.1016/j.jpowsour.2019.05.039.
|
37 |
HUANG Z, SONG W L, LIU Y J, et al. Stable quasi-solid-state aluminum batteries[J]. Advanced Materials, 2022: doi: 10.1002/adma.202104557.
|
38 |
CHEN L L, LI N, SHI H F, et al. Stable wide-temperature and low volume expansion Al batteries: Integrating few-layer graphene with multifunctional cobalt boride nanocluster as positive electrode[J]. Nano Research, 2020, 13(2): 419-429.
|
39 |
CHEN L L, SONG W L, LI N, et al. Nonmetal Current collectors: The key component for high-energy-density aluminum batteries[J]. Advanced Materials, 2020, 32(42): doi: 10.1002/adma.202001212.
|
40 |
ZHOU Z L, LI N, YANG Y Z, et al. Ultra-lightweight 3D carbon current collectors: Constructing all-carbon electrodes for stable and high energy density dual-ion batteries[J]. Advanced Energy Materials, 2018, 8(26): doi: 10.1002/aenm.201801439.
|
41 |
ZHANG J N, LI Q H, OUYANG C Y, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V[J]. Nature Energy, 2019, 4(7): 594-603.
|
42 |
BOND T, ZHOU J G, CUTLER J. Electrode stack geometry changes during gas evolution in pouch-cell-type lithium ion batteries[J]. Journal of the Electrochemical Society, 2016, 164(1): A6158-A6162.
|
43 |
CHEN C C, WEI Y, ZHAO Z B, et al. Investigation of the swelling failure of lithium-ion battery packs at low temperatures using 2D/3D X-ray computed tomography[J]. Electrochimica Acta, 2019, 305: 65-71.
|
44 |
温家伟. 锂离子柱状电池内部应变场实验表征与数值模拟研究[D]. 北京: 北京理工大学, 2021.
|
|
WENG J W. Experimental characterization and simulation research on the internal strain field of lithium ion cylindrical battery[D]. Beijing: Beijing Institute of Technology, 2021.
|
45 |
DU X, WU Q, WANG Y N, et al. Visualizing two-dimensional internal temperature distribution in cylindrical Li-ion cells[J]. Journal of Power Sources, 2020, 446: doi: 10.1016/j.jpowsour. 2019.227343.
|
46 |
TAN J, MATZ J, DONG P, et al. A growing appreciation for the role of LiF in the solid electrolyte interphase[J]. Advanced Energy Materials, 2021, 11(16): doi: 10.1002aenm.202100046.
|
47 |
WANG L C, SONG W L, ZHANG Y J, et al. Active reconfigurable tristable square-twist origami[J]. Advanced Functional Materials, 2020, 30(13): doi: 10.1002/adfm.201909087.
|
48 |
LI N, CHEN H S, YANG S Q, et al. Bidirectional planar flexible snake-origami batteries[J]. Advanced Science, 2021, 8(20): doi: 10.1002/advs.202101372.
|