Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (3): 818-833.doi: 10.19799/j.cnki.2095-4239.2021.0713
Previous Articles Next Articles
Zhiqiang ZHAO1,2(), Hengjun LIU1,2, Xixiang XU1,2, Yuanyuan PAN1,2, Qinghao LI1, Hongsen LI1, Han HU3, Qiang LI1,2()
Received:
2021-12-28
Revised:
2022-01-14
Online:
2022-03-05
Published:
2022-03-11
Contact:
Qiang LI
E-mail:2021020313@qdu.edu.cn;liqiang@qdu.edu.cn
CLC Number:
Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science[J]. Energy Storage Science and Technology, 2022, 11(3): 818-833.
1 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
2 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
3 | 张利强, 唐永福, 刘秋男, 等. 原位透射电镜技术在电池领域的研究进展[J]. 储能科学与技术, 2019, 8(6): 1050-1061. |
ZHANG L Q, TANG Y F, LIU Q N, et al. Review of in situ transmission electron microscopy studies of battery materials[J]. Energy Storage Science and Technology, 2019, 8(6): 1050-1061. | |
4 | 柯承志, 肖本胜, 李苗, 等. 电极材料储锂行为及其机制的原位透射电镜研究进展[J]. 储能科学与技术, 2021, 10(4): 1219-1236. |
KE C Z, XIAO B S, LI M, et al. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy[J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. | |
5 | CHERNOVA N A, NOLIS G M, OMENYA F O, et al. What can we learn about battery materials from their magnetic properties?[J]. Journal of Materials Chemistry, 2011, 21(27): 9865-9875. |
6 | GOODENOUGH J B, WICKHAM D G, CROFT W J. Some magnetic and crystallographic properties of the system LixNi1-2 xNixO[J]. Journal of Physics and Chemistry of Solids, 1958, 5(1/2): 107-116. |
7 | XIAO J, CHERNOVA N A, WHITTINGHAM M S. Layered mixed transition metal oxide cathodes with reduced cobalt content for lithium ion batteries[J]. Chemistry of Materials, 2008, 20(24): 7454-7464. |
8 | AIT SALAH A, MAUGER A, ZAGHIB K, et al. Reduction Fe3+ of impurities in LiFePO4 from pyrolysis of organic precursor used for carbon deposition[J]. Journal of the Electrochemical Society, 2006, 153(9): doi: 10.1149/1.2213527. |
9 | RAVET N, GAUTHIER M, ZAGHIB K, et al. Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive[J]. Chemistry of Materials, 2007, 19(10): 2595-2602. |
10 | ZAGHIB K, MAUGER A, GOODENOUGH J B, et al. Electronic, optical, and magnetic properties of LiFePO4: Small magnetic polaron effects[J]. Chemistry of Materials, 2007, 19(15): 3740-3747. |
11 | WHITTINGHAM M S, SONG Y N, LUTTA S, et al. Some transition metal (oxy) phosphates and vanadium oxides for lithium batteries[J]. Journal of Materials Chemistry, 2005, 15(33): doi: 10.1039/B501961C. |
12 | ZAGHIB K, RAVET N, GAUTHIER M, et al. Optimized electrochemical performance of LiFePO4 at 60 ℃ with purity controlled by SQUID magnetometry[J]. Journal of Power Sources, 2006, 163(1): 560-566. |
13 | OMENYA F, CHERNOVA N A, UPRETI S, et al. Can vanadium be substituted into LiFePO4?[J]. Chemistry of Materials, 2011, 23(21): 4733-4740. |
14 | UPRETI S, CHERNOVA N A, XIAO J, et al. Crystal structure, physical properties, and electrochemistry of copper substituted LiFePO4 single crystals[J]. Chemistry of Materials, 2012, 24(1): 166-173. |
15 | XIAO J, CHERNOVA N A, UPRETI S, et al. Electrochemical performances of LiMnPO4 synthesized from non-stoichiometric Li/Mn ratio[J]. Physical Chemistry Chemical Physics: PCCP, 2011, 13(40): 18099-18106. |
16 | COEY J M D. Magnetism and magnetic materials[M]. England: Cambridge University Press, 2010. |
17 | 郭贻诚. 铁磁学[M]. 北京: 北京大学出版社, 2014.GUO Y C. Ferromagnetics[M]. Beijing: Peking University Press, 2014. |
18 | 戴道生. 物质磁性基础[M]. 北京: 北京大学出版社, 2016. |
DAI D S.Basics magnetism of matter[M]. Beijing: Peking University Press, 2016. | |
19 | WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10): 4271-4301. |
20 | CHERNOVA N A, MA M M, XIAO J, et al. Layered LixNiyMnyCo1-2 yO2 cathodes for lithium ion batteries: Understanding local structure via magnetic properties[J]. Chemistry of Materials, 2007, 19(19): 4682-4693. |
21 | SANTORO R P, NEWNHAM R E. Antiferromagnetism in LiFePO4[J]. Acta Crystallographica, 1967, 22(3): 344-347. |
22 | LI J Y, GARLEA V O, ZARESTKY J L, et al. Spin-waves in antiferromagnetic single-crystal LiFePO4[J]. Physical Review B, 2006, 73(2): doi: 10.1103/PhysRevB.73.024410. |
23 | PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194. |
24 | YANG M R, TENG T H, WU S H. LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis[J]. Journal of Power Sources, 2006, 159(1): 307-311. |
25 | CHEN J J, VACCHIO M J, WANG S J, et al. The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications[J]. Solid State Ionics, 2008, 178(31/32): 1676-1693. |
26 | SALAH A A, MAUGER A, JULIEN C M, et al. Nano-sized impurity phases in relation to the mode of preparation of LiFePO4[J]. Materials Science and Engineering: B, 2006, 129(1/2/3): 232-244. |
27 | AIT-SALAH A, ZAGHIB K, MAUGER A, et al. Magnetic studies of the carbothermal effect on LiFePO4[J]. Physica Status Solidi (A), 2006, 203(1): R1-R3. |
28 | GARDINER G R, ISLAM M S. Anti-site defects and ion migration in the LiFe0.5Mn0.5PO4 mixed-metal cathode material[J]. Chemistry of Materials, 2010, 22(3): 1242-1248. |
29 | MALIK R, BURCH D, BAZANT M, et al. Particle size dependence of the ionic diffusivity[J]. Nano Letters, 2010, 10(10): 4123-4127. |
30 | YANG J J, TSE J S. Li ion diffusion mechanisms in LiFePO4: An ab initio molecular dynamics study[J]. The Journal of Physical Chemistry A, 2011, 115(45): 13045-13049. |
31 | AXMANN P, STINNER C, WOHLFAHRT-MEHRENS M, et al. Nonstoichiometric LiFePO4: Defects and related properties[J]. Chemistry of Materials, 2009, 21(8): 1636-1644. |
32 | WERNER J, NEEF C, KOO C, et al. Antisite disorder in the battery material LiFePO4[J]. Physical Review Materials, 2020, 4(11): doi: 10.1103/PhysRevMaterials.4.115403. |
33 | JIAO S H, REN X D, CAO R G, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nature Energy, 2018, 3(9): 739-746. |
34 | KANG K, MENG Y S, BRÉGER J, et al. Electrodes with high power and high capacity for rechargeable lithium batteries[J]. Science, 2006, 311(5763): 977-980. |
35 | MARTHA S K, SCLAR H, SZMUK FRAMOWITZ Z, et al. A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds[J]. Journal of Power Sources, 2009, 189(1): 248-255. |
36 | ARMSTRONG A R, HOLZAPFEL M, NOVÁK P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. Journal of the American Chemical Society, 2006, 128(26): 8694-8698. |
37 | THACKERAY M M, KANG S H, JOHNSON C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(30): 3112-3125. |
38 | CHAPPEL E, NÚÑEZ-REGUEIRO M D, CHOUTEAU G, et al. Low field magnetism and cationic distribution in quasi-stoichiometric Li1- xNi1+ xO2[J]. Solid State Communications, 2001, 119(2): 83-87. |
39 | CHAPPEL E, NÚÑEZ-REGUEIRO M D, DE BRION S, et al. Interlayer magnetic frustration in quasistoichiometric Li1- xNi1+ xO2[J]. Physical Review B, 2002, 66(13): doi: 10.1103/PhysRevB.66.132412. |
40 | NAKAMURA T, YAMADA Y, TABUCHI M. Magnetic and electrochemical studies on Ni2+-substituted Li-Mn spinel oxides[J]. Journal of Applied Physics, 2005, 98(9): doi: 10.1063/1.2128469. |
41 | ABDEL-GHANY A, ZAGHIB K, GENDRON F, et al. Structural, magnetic and electrochemical properties of LiNi0.5Mn0.5O2 as positive electrode for Li-ion batteries[J]. Electrochimica Acta, 2007, 52(12): 4092-4100. |
42 | MACNEIL D D, LU Z, DAHN J R. Structure and electrochemistry of Li[NixCo1-2 xMnx]O2 (0≤x≤1/2)[J]. Journal of the Electrochemical Society, 2002, 149(10): doi: 10.1149/1.1505633. |
43 | KOBAYASHI H, SAKAEBE H, KAGEYAMA H, et al. Changes in the structure and physical properties of the solid solution LiNi1- xMnxO2 with variation in its composition[J]. Journal of Materials Chemistry, 2003, 13(3): 590-595. |
44 | LI H, WANG Z X, CHEN L Q, et al. Research on advanced materials for Li-ion batteries[J]. Advanced Materials, 2009, 21(45): 4593-4607. |
45 | ROUSSE G, RODRIGUEZ-CARVAJAL J, PATOUX S, et al. Magnetic structures of the triphylite LiFePO4 and of its delithiated form FePO4[J]. Chemistry of Materials, 2003, 15(21): 4082-4090. |
46 | HU J T, ZENG H, CHEN X, et al. Revealing insights into LixFePO4 nanocrystals with magnetic order at room temperature resulting in trapping of Li ions[J]. The Journal of Physical Chemistry Letters, 2019, 10(17): 4794-4799. |
47 | KOPE¢ M, YAMADA A, KOBAYASHI G, et al. Structural and magnetic properties of Lix(MnyFe1- y)PO4 electrode materials for Li-ion batteries[J]. Journal of Power Sources, 2009, 189(2): 1154-1163. |
48 | KÖNTJE M, MEMM M, AXMANN P, et al. Substituted transition metal phospho olivines LiMM'PO4 (M=Mn, M'=Fe, Co, Mg): Optimisation routes for LiMnPO4[J]. Progress in Solid State Chemistry, 2014, 42(4): 106-117. |
49 | CHOI D, XIAO J, CHOI Y J, et al. Thermal stability and phase transformation of electrochemically charged/discharged LiMnPO4 cathode for Li-ion batteries[J]. Energy & Environmental Science, 2011, 4(11): doi: 10.1039/CIEE01501J. |
50 | LIU Y M, GU Y, ZENG H, et al. Role of superexchange interactions on the arrangement of Fe and Mn in LiMnxFe1- xPO4[J]. The Journal of Physical Chemistry C, 2019, 123(27): 17002-17009. |
51 | YAMADA A, HOSOYA M, CHUNG S C, et al. Olivine-type cathodes[J]. Journal of Power Sources, 2003, 119/120/121: 232-238. |
52 | HUANG Y Q, FANG J, OMENYA F, et al. Understanding the stability of MnPO4[J]. Journal of Materials Chemistry A, 2014, 2(32): 12827-12834. |
53 | YAMADA A, TAKEI Y, KOIZUMI H, et al. Electrochemical, magnetic, and structural investigation of the Lix(MnyFe1- y)PO4 olivine phases[J]. Chemistry of Materials, 2006, 18(3): 804-813. |
54 | MOHANTY D, GABRISCH H. Microstructural investigation of LixNi1/3Mn1/3Co1/3O2 (x≤1) and its aged products via magnetic and diffraction study[J]. Journal of Power Sources, 2012, 220: 405-412. |
55 | XIAO Y G, LIU T C, LIU J J, et al. Insight into the origin of lithium/nickel ions exchange in layered Li(NixMnyCoz)O2 cathode materials[J]. Nano Energy, 2018, 49: 77-85. |
56 | MIAO P, WANG R, ZHU W M, et al. Revealing magnetic ground state of a layered cathode material by muon spin relaxation and neutron scattering experiments[J]. Applied Physics Letters, 2019, 114(20): doi: 10.1063/1.5096620. |
57 | ZHENG J X, YE Y K, LIU T C, et al. Ni/Li disordering in layered transition metal oxide: Electrochemical impact, origin, and control[J]. Accounts of Chemical Research, 2019, 52(8): 2201-2209. |
58 | MOORHEAD-ROSENBERG Z, SHIN D W, CHEMELEWSKI K R, et al. Quantitative determination of Mn3+ content in LiMn1.5Ni0.5O4 spinel cathodes by magnetic measurements[J]. Applied Physics Letters, 2012, 100(21): doi: 10.1063/1.4722927. |
59 | KLINSER G, TOPOLOVEC S, KREN H, et al. Continuous monitoring of the bulk oxidation states in LixNi1/3Mn1/3Co1/3O2 during charging and discharging[J]. Applied Physics Letters, 2016, 109(21): doi: 10.1063/1.4968547. |
60 | KLINSER G, TOPOLOVEC S, KREN H, et al. Charging of lithium cobalt oxide battery cathodes studied by means of magnetometry[J]. Solid State Ionics, 2016, 293: 64-71. |
61 | TOPOLOVEC S, KREN H, KLINSER G, et al. Operando magnetometry on LixCoO2 during charging/discharging[J]. Journal of Solid State Electrochemistry, 2016, 20(5): 1491-1496. |
62 | WÜRSCHUM R, TOPOLOVEC S, KLINSER G, et al. Defects and charging processes in Li-ion battery cathodes studied by operando magnetometry and positron annihilation[J]. Materials Science Forum, 2016, 879: 2125-2130. |
63 | KLINSER G, STÜCKLER M, KREN H, et al. Charging processes in the cathode LiNi0.6Mn0.2Co0.2O2 as revealed by operando magnetometry[J]. Journal of Power Sources, 2018, 396: 791-795. |
64 | GERSHINSKY G, BAR E, MONCONDUIT L, et al. Operando electron magnetic measurements of Li-ion batteries[J]. Energy & Environmental Science, 2014, 7(6): 2012-2016. |
65 | LI Q, LI H S, XIA Q T, et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry[J]. Nature Materials, 2021, 20(1): 76-83. |
66 | LI H S, HU Z Q, XIA Q T, et al. Operando magnetometry probing the charge storage mechanism of CoO lithium-ion batteries[J]. Advanced Materials, 2021, 33(12): doi: 10.1002/adma.202006629. |
67 | KIM H, CHOI W, YOON J, et al. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries[J]. Chemical Reviews, 2020, 120(14): 6934-6976. |
68 | LARUELLE S, GRUGEON S, POIZOT P, et al. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential[J]. Journal of the Electrochemical Society, 2002, 149(5): doi: 10.1149/1.1467947. |
69 | JAMNIK J, MAIER J. Nanocrystallinity effects in lithium battery materials[J]. Physical Chemistry Chemical Physics, 2003, 5(23): doi: 10.1039/B309130A. |
70 | ZHUKOVSKII Y F, BALAYA P, KOTOMIN E A, et al. Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations[J]. Physical Review Letters, 2006, 96(5): doi: 10.1103/PhysRevLett.96.058302. |
71 | MAIER J. Mass storage in space charge regions of nano-sized systems: (Nano-ionics. Part V)[J]. Faraday Discuss, 2007, 134: 51-66. |
72 | FU L J, CHEN C C, MAIER J. Interfacial mass storage in nanocomposites[J]. Solid State Ionics, 2018, 318: 54-59. |
73 | HU Y Y, LIU Z, NAM K W, et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes[J]. Nature Materials, 2013, 12(12): 1130-1136. |
74 | ZHANG W, BOCK D C, PELLICCIONE C J, et al. Insights into ionic transport and structural changes in magnetite during multiple-electron transfer reactions[J]. Advanced Energy Materials, 2016, 6(10): doi: 10.1002/aenm.201502471. |
75 | KOMABA S, MIKUMO T, YABUUCHI N, et al. Electrochemical insertion of Li and Na ions into nanocrystalline Fe3O4 and α-Fe2O3 for rechargeable batteries[J]. Journal of the Electrochemical Society, 2010, 157(1): doi: 10.1149/1.3254160. |
76 | DUAN C G, VELEV J P, SABIRIANOV R F, et al. Surface magnetoelectric effect in ferromagnetic metal films[J]. Physical Review Letters, 2008, 101(13): doi: 10.1103/PhysRevLett.101.137201.137201. |
77 | HJORTSTAM O, TRYGG J, WILLS J M, et al. Metals Fe, Co, and Ni and their overlayers on Cu(001)[J]. Physical Review B, 1996, 53(14): 9204-9213. |
78 | GRUGEON S, LARUELLE S, DUPONT L, et al. An update on the reactivity of nanoparticles Co-based compounds towards Li[J]. Solid State Sciences, 2003, 5(6): 895-904. |
79 | LI X K, LI Z H, LIU Y, et al. Transition metal catalysis in lithium-ion batteries studied by operando magnetometry[J]. Chinese Journal of Catalysis, 2022, 43(1): 158-166. |
80 | HU Z, LIU Q N, CHOU S L, et al. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries[J]. Advanced Materials, 2017, 29(48): doi: 10.1002/adma.201700606. |
81 | WANG H G, YUAN S, MA D L, et al. Electrospun materials for lithium and sodium rechargeable batteries: From structure evolution to electrochemical performance[J]. Energy & Environmental Science, 2015, 8(6): 1660-1681. |
82 | LI Z H, ZHANG Y C, LI X K, et al. Reacquainting the electrochemical conversion mechanism of FeS2 sodium-ion batteries by operando magnetometry[J]. Journal of the American Chemical Society, 2021, 143(32): 12800-12808. |
83 | SON S B, YERSAK T A, PIPER D M, et al. A stabilized PAN-FeS2 cathode with an EC/DEC liquid electrolyte[J]. Advanced Energy Materials, 2014, 4(3): doi: 10.1002/aenm.201300961. |
84 | XU X, CAI T W, MENG Z, et al. FeS2 nanocrystals prepared in hierarchical porous carbon for lithium-ion battery[J]. Journal of Power Sources, 2016, 331: 366-372. |
85 | WANG H Z, ZHAO L Y, ZHANG H, et al. Revealing the multiple cathodic and anodic involved charge storage mechanism in an FeSe2 cathode for aluminium-ion batteries by in situ magnetometry[J]. Energy & Environmental Science, 2022, 15(1): 311-319. |
86 | ZHANG F L, LI Z H, XIA Q T, et al. Li-ionic control of magnetism through spin capacitance and conversion[J]. Matter, 2021, 4(11): 3605-3620. |
87 | 黄杰, 凌仕刚, 王雪龙, 等. 锂离子电池基础科学问题(XIV)——计算方法[J]. 储能科学与技术, 2015, 4(2): 215-230. |
HUANG J, LING S G, WANG X L, et al. Fundamental scientific aspects of lithium ion batteries(XIV)—Calculation methods[J]. Energy Storage Science and Technology, 2015, 4(2): 215-230. | |
88 | 王达, 周航, 焦遥, 等. 离子嵌入电化学反应机理的理解及性能预测: 从晶体场理论到配位场理论[J]. 储能科学与技术, 2022,11(2): 409-433. |
WANG D, ZHOU H, JIAO Y, et al. The understanding and performance prediction of ions-intercalation electrochemistry: From crystal field theory to ligand field theory[J]. Energy Storage Science and Technology, 2022,11(2): 409-433. | |
89 | 耿福山, 胡炳文. 锂离子电池中重要正极材料体系的磁共振研究进展[J]. 储能科学与技术, 2019, 8(6): 1017-1023. |
GENG F S, HU B W. Progress in magnetic resonance research of important cathode materials in lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1017-1023. |
[1] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[2] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[3] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
[4] | Zheng ZHENG, Xiaoshuai WANG, Bin LI, Tao HUANG, Peike LI. Adaptive interleaved control equalization for lithium-ion battery packs based on three-winding transformers [J]. Energy Storage Science and Technology, 2022, 11(4): 1131-1140. |
[5] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[6] | Yuyang LIU, Shunli WANG, Yanxin XIE, Weikang JI, Yixing ZHANG. Research on Li-ion battery modeling and SOC estimation based on online parameter identification and improved 2RC-PNGV model [J]. Energy Storage Science and Technology, 2021, 10(6): 2312-2317. |
[7] | Yifeng FENG, Jiani SHEN, Haiying CHE, Zifeng MA, Yijun HE, Wen TAN, Qingheng YANG. State of health prediction for sodium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1407-1415. |
[8] | Pu REN, Shunli WANG, Mingfang HE, Yongcun FAN, Wen CAO, Wei XIE. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading [J]. Energy Storage Science and Technology, 2021, 10(2): 738-743. |
[9] | Yufeng XU, Jiabin YAN, Jianming HE, Zhengwei JU, Ge CHENG, Da ZHENG, Yinlong ZOU, Lei YE, Jianxin WANG. Integration and application of retried LIBs in photovoltaic and energy storage micro grid [J]. Energy Storage Science and Technology, 2021, 10(1): 349-354. |
[10] | Banghua DU, Yu ZHANG, Tiezhou WU, Yanlin HE, Zilong LI. An online identification method for equivalent model parameters of aging lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 342-348. |
[11] | Jingjing ZHANG, Xiaoling CUI, Dongni ZHAO, Li YANG, Jie WANG. Effects of concentrated electrolytes on the electrode /electrolyte interface [J]. Energy Storage Science and Technology, 2021, 10(1): 143-149. |
[12] | Zhou JIN, Hailong YU, Wenwu ZHAO, Guangjin ZHAO, Xuejie HUANG. Graphite/nano-Sn composite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 137-142. |
[13] | Shouding LI, Yan LI, Jie TIAN, Yuming ZHAO, Min YANG, Jun LUO, Yuancheng CAO, Shijie CHENG. Current status and emerging trends in the safety of Li-ion battery energy storage for power grid applications [J]. Energy Storage Science and Technology, 2020, 9(5): 1505-1516. |
[14] | Danfeng ZHANG, Jinhua SUN, Qingsong WANG. Effect of module structure on performance of phase change material based Li-ion battery thermal management system [J]. Energy Storage Science and Technology, 2020, 9(5): 1526-1539. |
[15] | Siyu ZHOU, Zheng TANG, Jingrui FAN, Yougen TANG, Dan SUN, Haiyan WANG. Research progress of transition metal oxide micro-nano structured arrays for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1383-1395. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||