Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (11): 3488-3498.doi: 10.19799/j.cnki.2095-4239.2023.0485
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Xuanliang ZHANG1(), Ting HE1(), Wenlong ZHU1, Shen WANG2, Jianhua ZENG2, Quan XU3, Yingchun NIU3
Received:
2023-07-17
Revised:
2023-08-02
Online:
2023-11-05
Published:
2023-11-16
Contact:
Ting HE
E-mail:zhangxuanliang1999@163.com;xuantinghe@hit.edu.cn
CLC Number:
Xuanliang ZHANG, Ting HE, Wenlong ZHU, Shen WANG, Jianhua ZENG, Quan XU, Yingchun NIU. A SOH estimation model for energy storage batteries based on multiple cycle features[J]. Energy Storage Science and Technology, 2023, 12(11): 3488-3498.
Table 3
SOH estimation errors between MCNet and LSTM, BiLSTM, GRU, and BiGRU models."
模型 | 组1 | 组2 | 组3 | 组4 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | ||||
BiLSTM | 1.71% | 0.91% | 1.49% | 1.06% | 1.09% | 0.78% | 1.46% | 0.95% | |||
LSTM | 1.59% | 0.93% | 1.33% | 0.92% | 1.09% | 0.81% | 1.54% | 0.98% | |||
BiGRU | 1.72% | 1.02% | 1.16% | 0.77% | 1.14% | 0.79% | 1.37% | 1.02% | |||
GRU | 1.66% | 0.97% | 1.32% | 0.95% | 1.35% | 1.13% | 1.81% | 1.15% | |||
MCNet | 1.01% | 0.55% | 1.04% | 0.65% | 0.86% | 0.60% | 1.36% | 0.89% |
1 | 王凡, 史永胜, 刘博亲, 等. 基于注意力改进BiGRU的锂离子电池健康状态估计[J]. 储能科学与技术, 2021, 10(6): 2326-2333. |
WANG F, SHI Y S, LIU B Q, et al. Health state estimation of lithium-ion batteries based on attention augmented BiGRU[J]. Energy Storage Science and Technology, 2021, 10(6): 2326-2333. | |
2 | 戴彦文, 于艾清. 基于健康特征参数的CNN-LSTM&GRU组合锂电池SOH估计[J]. 储能科学与技术, 2022, 11(5): 1641-1649. |
DAI Y W, YU A Q. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation[J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. | |
3 | ZHANG Y B, WANG Y Y, XIA Y, et al. A deep learning approach to estimate the state of health of lithium-ion batteries under varied and incomplete working conditions[J]. Journal of Energy Storage, 2023, 58: 106323. |
4 | 熊瑞. 动力电池管理系统核心算法[M]. 北京: 机械工业出版社, 2018. |
XIONG R. Core algorithm of battery management system for EVs[M]. Beijing: China Machine Press, 2018. | |
5 | 崔显, 陈自强. 基于ECM和SGPR的高鲁棒性锂离子电池健康状态估计方法[J/OL].上海交通大学学报, 2023, 1-23. |
CUI X, CHEN Z Q. A highly robust state of health estimation method of lithium-ion battery based on ECM and SGPR[J/OL]. Journal of Shanghai Jiaotong University, 2023, 1-23. | |
6 | SANKARASUBRAMANIAN S, KRISHNAMURTHY B. A capacity fade model for lithium-ion batteries including diffusion and kinetics[J]. Electrochimica Acta, 2012, 70: 248-254. |
7 | CHEN Z, SUN M M, SHU X, et al. On-board state of health estimation for lithium-ion batteries based on random forest[C]//2018 IEEE International Conference on Industrial Technology (ICIT). February 20-22, 2018, Lyon, France. IEEE, 2018: 1754-1759. |
8 | LI R, LI W R, ZHANG H N, et al. On-line estimation method of lithium-ion battery health status based on PSO-SVM[J]. Frontiers in Energy Research, 2021, 9: 693249. |
9 | LIN M Q, YAN C H, MENG J H, et al. Lithium-ion batteries health prognosis via differential thermal capacity with simulated annealing and support vector regression[J]. Energy, 2022, 250: 123829. |
10 | KHUMPROM P, YODO N. A data-driven predictive prognostic model for lithium-ion batteries based on a deep learning algorithm[J]. Energies, 2019, 12(4): 660. |
11 | HAN T, WANG Z, MENG H X. End-to-end capacity estimation of Lithium-ion batteries with an enhanced long short-term memory network considering domain adaptation[J]. Journal of Power Sources, 2022, 520: 230823. |
12 | LEE P Y, KWON S, KANG D, et al. Principle component analysis-based optimized feature extraction merged with nonlinear regression model for improved state-of-health prediction[J]. Journal of Energy Storage, 2022, 48: 104026. |
13 | MA Y, SHAN C, GAO J W, et al. A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction[J]. Energy, 2022, 251: 123973. |
14 | CHEN Z, ZHAO H Q, ZHANG Y J, et al. State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network[J]. Journal of Power Sources, 2022, 521: 230892. |
15 | 刘芊彤, 邢远秀. 基于VMD-PSO-GRU模型的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2023, 12(1): 236-246. |
LIU Q T, XING Y X. Remaining life prediction of lithium-ion battery based on VMD-PSO-GRU model[J]. Energy Storage Science and Technology, 2023, 12(1): 236-246. | |
16 | FAN Y X, XIAO F, LI C R, et al. A novel deep learning framework for state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32: 101741. |
17 | SUN H L, YANG D F, DU J X, et al. Prediction of Li-ion battery state of health based on data-driven algorithm[J]. Energy Reports, 2022, 8: 442-449. |
18 | CHEN J X, FENG X, JIANG L, et al. State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network[J]. Energy, 2021, 227: 120451. |
19 | CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar. Stroudsburg, PA, USA: Association for Computational Linguistics, 2014. |
20 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[EB/OL]. 2017[2023-03-12]. https://arxiv.org/abs/1706. 03762.pdf. |
21 | YUAN F N, ZHANG Z X, FANG Z J. An effective CNN and Transformer complementary network for medical image segmentation[J]. Pattern Recognition, 2023, 136: 109228. |
22 | CALCE Battery Data, https://web.calce.umd.edu/batteries/data.htm |
23 | BAO L N, LE D N, NGUYEN G N, et al. Optimizing feature selection in video-based recognition using Max-Min Ant System for the online video contextual advertisement user-oriented system[J]. Journal of Computational Science, 2017, 21: 361-370. |
[1] | Fang LI, Yongjun MIN, Yong ZHANG. Review of key technology research on the reliability of power lithium batteries based on big data [J]. Energy Storage Science and Technology, 2023, 12(6): 1981-1994. |
[2] | Linze LI, Xiangwen ZHANG. SOH estimation for lithium-ion batteries based on combination of frequency impedance characteristics [J]. Energy Storage Science and Technology, 2023, 12(5): 1705-1712. |
[3] | Feng WANG, Zhiqiang LIU, Keyong ZHANG, Guanrui WANG, Hongde YIN, Zihao JIA, Haihui ZHAO, Yang MI. Adjustable resource aggregation and scheduling in distribution transformer station areas based on time-of-use price and charge-discharge strategy of energy storage [J]. Energy Storage Science and Technology, 2023, 12(4): 1204-1214. |
[4] | Xinhao ZHAO, Liang XU. Improved firefly optimization algorithm to optimize back propagation neural network for state of health estimation of power lithium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(3): 934-940. |
[5] | Ruijie WANG, Zhouli HUI, Ming YANG. Gaussian process regression based on indirect health indicators for SOH estimation of lithium battery [J]. Energy Storage Science and Technology, 2023, 12(2): 560-569. |
[6] | Runxing LIU, Yucheng GAI, Pinzhe YANG, Wei ZHANG, Qin LIU, Zejun DING, Xizhe MO. Health-status detection of lead-acid battery based on AC impedance spectroscopy [J]. Energy Storage Science and Technology, 2023, 12(11): 3499-3507. |
[7] | Chen WANG, Yongjun MIN. SOH estimation of lithium-ion batteries based on capacity increment curve and GWO-GPR [J]. Energy Storage Science and Technology, 2023, 12(11): 3508-3518. |
[8] | Baihai MAO, Wu QIN, Xianbin XIAO, Zongming ZHENG. SOH estimation of lithium-ion batteries based on LSTM&GRU-Attention multijoint model [J]. Energy Storage Science and Technology, 2023, 12(11): 3519-3527. |
[9] | Xinghai SONG, Xiaoqian ZHANG, Huishi LIANG, Zinan SHI, Miangang LI, Kui ZHOU, Xiaoxu GONG. Predicting the remaining service life of lithium batteries based on the SDAE-transformer-ECA network [J]. Energy Storage Science and Technology, 2023, 12(10): 3181-3190. |
[10] | Rui CHEN, Kai DING, Lianxing ZU, Qingsong XU, Zongbiao WANG, Dasi LUO, Jingjiang SU, Sheng HU, Jilong MAO. Prediction of state of health of lithium-ion batteries based on the AED-CEEMD-Transformer network [J]. Energy Storage Science and Technology, 2023, 12(10): 3242-3253. |
[11] | Qingyang CHEN, Yinghui HE, Guanding YU, Mingyang LIU, Chong XU, Zhenming LI. Integrating model- and data-driven methods for accurate state estimation of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 209-217. |
[12] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[13] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[14] | Zheng ZHENG, Xiaoshuai WANG, Bin LI, Tao HUANG, Peike LI. Adaptive interleaved control equalization for lithium-ion battery packs based on three-winding transformers [J]. Energy Storage Science and Technology, 2022, 11(4): 1131-1140. |
[15] | Shangyu ZHAO, Zhen ZHANG, Baoyuan WANG, Quhu ZENG. An engineering method for detection of problems of lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2022, 11(2): 643-651. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||