Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (10): 3242-3253.doi: 10.19799/j.cnki.2095-4239.2023.0440
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Rui CHEN1(), Kai DING1, Lianxing ZU1, Qingsong XU1, Zongbiao WANG1, Dasi LUO1, Jingjiang SU1, Sheng HU1, Jilong MAO2
Received:
2023-06-25
Revised:
2023-07-14
Online:
2023-10-05
Published:
2023-10-09
Contact:
Rui CHEN
E-mail:chenrui@cyg.com
CLC Number:
Rui CHEN, Kai DING, Lianxing ZU, Qingsong XU, Zongbiao WANG, Dasi LUO, Jingjiang SU, Sheng HU, Jilong MAO. Prediction of state of health of lithium-ion batteries based on the AED-CEEMD-Transformer network[J]. Energy Storage Science and Technology, 2023, 12(10): 3242-3253.
Table 1
Comparison of multiple methods for estimating error metrics"
电池 | 误差 | 前30%训练集 | 前50%训练集 | 前70%训练集 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OURS | LSTM | RNN | GRU | OURS | LSTM | RNN | GRU | OURS | LSTM | RNN | GRU | ||||
A0 | RMSE | 0.04599 | 0.04981 | 0.05130 | 0.05337 | 0.04753 | 0.05160 | 0.05322 | 0.05334 | 0.04857 | 0.05027 | 0.05059 | 0.05109 | ||
MAPE | 0.03332 | 0.03533 | 0.03715 | 0.03857 | 0.03457 | 0.03798 | 0.03993 | 0.04000 | 0.03842 | 0.04049 | 0.04076 | 0.04106 | |||
A1 | RMSE | 0.05217 | 0.05672 | 0.06219 | 0.06051 | 0.05467 | 0.05906 | 0.06120 | 0.06363 | 0.04996 | 0.05406 | 0.05551 | 0.05541 | ||
MAPE | 0.03859 | 0.04137 | 0.04570 | 0.04429 | 0.04155 | 0.04562 | 0.04742 | 0.04928 | 0.04073 | 0.04444 | 0.04561 | 0.04542 | |||
B0 | RMSE | 0.04896 | 0.05504 | 0.05836 | 0.05666 | 0.04810 | 0.05150 | 0.05475 | 0.05305 | 0.04934 | 0.05091 | 0.05258 | 0.05206 | ||
MAPE | 0.03738 | 0.04130 | 0.04390 | 0.04240 | 0.03744 | 0.04056 | 0.04292 | 0.04162 | 0.04006 | 0.04188 | 0.04319 | 0.04277 | |||
B1 | RMSE | 0.04890 | 0.05444 | 0.05632 | 0.05516 | 0.05159 | 0.05661 | 0.05782 | 0.05914 | 0.04536 | 0.04943 | 0.05149 | 0.05171 | ||
MAPE | 0.03676 | 0.03983 | 0.04254 | 0.04176 | 0.04010 | 0.04385 | 0.04506 | 0.04612 | 0.03828 | 0.04139 | 0.04273 | 0.04293 | |||
C1 | RMSE | 0.03968 | 0.04459 | 0.04657 | 0.04710 | 0.04254 | 0.04748 | 0.04901 | 0.04779 | 0.04229 | 0.04742 | 0.04841 | 0.04808 | ||
MAPE | 0.02872 | 0.03214 | 0.03331 | 0.03356 | 0.03111 | 0.03482 | 0.03605 | 0.03495 | 0.03308 | 0.03749 | 0.03813 | 0.03783 | |||
C2 | RMSE | 0.04011 | 0.04501 | 0.04707 | 0.04869 | 0.04270 | 0.04785 | 0.05026 | 0.04898 | 0.04509 | 0.04823 | 0.04889 | 0.04996 | ||
MAPE | 0.02793 | 0.03223 | 0.03306 | 0.03414 | 0.03043 | 0.03385 | 0.03680 | 0.03554 | 0.03572 | 0.03804 | 0.03870 | 0.03963 |
Table 2
CALCE cell estimation error"
电池 | 误差 | 前30%训练集 | 前50%训练集 | 前70%训练集 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OURS | LSTM | RNN | GRU | OURS | LSTM | RNN | GRU | OURS | LSTM | RNN | GRU | ||||
CS1 | RMSE | 0.03637 | 0.03937 | 0.03988 | 0.03986 | 0.03687 | 0.03802 | 0.03882 | 0.03882 | 0.03280 | 0.03324 | 0.03313 | 0.03335 | ||
MAPE | 0.08005 | 0.08188 | 0.08320 | 0.08314 | 0.08857 | 0.09069 | 0.09296 | 0.09296 | 0.09761 | 0.09977 | 0.09950 | 0.10023 | |||
CS2 | RMSE | 0.01584 | 0.01811 | 0.01829 | 0.01863 | 0.01451 | 0.01635 | 0.01653 | 0.01657 | 0.01060 | 0.01127 | 0.01154 | 0.01175 | ||
MAPE | 0.01573 | 0.01740 | 0.01763 | 0.01789 | 0.01495 | 0.01672 | 0.01691 | 0.01695 | 0.01184 | 0.01260 | 0.01288 | 0.01307 | |||
CS3 | RMSE | 0.02656 | 0.02884 | 0.02905 | 0.02925 | 0.02614 | 0.02770 | 0.02819 | 0.02824 | 0.02146 | 0.02175 | 0.02189 | 0.02190 | ||
MAPE | 0.03453 | 0.03639 | 0.03655 | 0.03673 | 0.03829 | 0.03861 | 0.03915 | 0.03923 | 0.03468 | 0.03540 | 0.03558 | 0.03562 | |||
CS4 | RMSE | 0.03259 | 0.03470 | 0.03536 | 0.03528 | 0.03030 | 0.03184 | 0.03234 | 0.03231 | 0.02546 | 0.02592 | 0.02613 | 0.02598 | ||
MAPE | 0.05495 | 0.05670 | 0.05776 | 0.05766 | 0.05607 | 0.05884 | 0.05978 | 0.05966 | 0.05538 | 0.05671 | 0.05760 | 0.05709 | |||
CS5 | RMSE | 0.02647 | 0.02843 | 0.02885 | 0.02835 | 0.02637 | 0.02775 | 0.02794 | 0.02787 | 0.02377 | 0.02405 | 0.02422 | 0.02423 | ||
MAPE | 0.03604 | 0.03743 | 0.03779 | 0.03736 | 0.04016 | 0.04059 | 0.04079 | 0.04066 | 0.04107 | 0.04120 | 0.04143 | 0.04144 | |||
CS 6 | RMSE | 0.02543 | 0.02787 | 0.02837 | 0.02833 | 0.02609 | 0.02752 | 0.02768 | 0.02772 | 0.02339 | 0.02353 | 0.02369 | 0.02366 | ||
MAPE | 0.03324 | 0.03491 | 0.03530 | 0.03525 | 0.03779 | 0.03802 | 0.03815 | 0.03819 | 0.03744 | 0.03762 | 0.03784 | 0.03777 |
1 | LU J H, XIONG R, TIAN J P, et al. Battery degradation prediction against uncertain future conditions with recurrent neural network enabled deep learning[J]. Energy Storage Materials, 2022, 50: 139-151. |
2 | 胡振恺, 雷博, 李勇琦, 等. 储能用锂离子电池安全性测试与评估方法比较[J]. 储能科学与技术, 2022, 11(5): 1650-1656. |
HU Z K, LEI B, LI Y Q, et al. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage[J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. | |
3 | 戴俊彦, 夏明超, 陈奇芳. 基于双重注意力机制的电池SOH估计和RUL预测编解码模型[J]. 电力系统自动化, 2023, 47(6): 168-177. |
DAI J Y, XIA M C, CHEN Q F. Encoding and decoding model of state of health estimation and remaining useful life prediction for batteries based on dual-stage attention mechanism[J]. Automation of Electric Power Systems, 2023, 47(6): 168-177. | |
4 | SHEN S Q, LIU B C, ZHANG K, et al. Toward fast and accurate SOH prediction for lithium-ion batteries[J]. IEEE Transactions on Energy Conversion, 2021, 36(3): 2036-2046. |
5 | 徐乐, 邓忠伟, 谢翌, 等. 锂离子电池高精度机理建模、参数辨识与寿命预测研究进展[J]. 机械工程学报, 2022, 58(22): 19-36. |
XU L, DENG Z W, XIE Y, et al. Review on research progress in high-fidelity modeling, parameter identification and lifetime prognostics of lithium-ion battery[J]. Journal of Mechanical Engineering, 2022, 58(22): 19-36. | |
6 | 王瑞洁, 惠周利, 杨明. 基于间接健康指标的高斯过程回归对锂电池SOH预测[J]. 储能科学与技术, 2023, 12(2): 560-569. |
WANG R J, HUI Z L, YANG M. Gaussian process regression based on indirect health indicators for SOH estimation of lithium battery[J]. Energy Storage Science and Technology, 2023, 12(2): 560-569. | |
7 | MA G J, XU S P, YANG T, et al. A transfer learning-based method for personalized state of health estimation of lithium-ion batteries[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, PP(99): 1-11. |
8 | 舒星, 刘永刚, 申江卫, 等. 基于改进最小二乘支持向量机与Box-Cox变换的锂离子电池容量预测[J]. 机械工程学报, 2021, 57(14): 118-128. |
SHU X, LIU Y G, SHEN J W, et al. Capacity prediction for lithium-ion batteries based on improved least squares support vector machine and box-cox transformation[J]. Journal of Mechanical Engineering, 2021, 57(14): 118-128. | |
9 | 何冰琛, 杨薛明, 王劲松, 等. 基于PCA-GPR的锂离子电池剩余使用寿命预测[J]. 太阳能学报, 2022, 43(5): 484-491. |
HE B C, YANG X M, WANG J S, et al. Prediction of remaining useful life of lithium-ion batteries based on pca-gpr[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 484-491. | |
10 | 郑伟彦, 吴靖, 许杰, 等. 基于RVM-PF融合算法的锂离子电池剩余使用寿命预测[J]. 浙江电力, 2021, 40(4): 54-64. |
ZHENG W Y, WU J, XU J, et al. Prediction of remaining useful life of lithium-ion battery based on RVM-PF algorithm[J]. Zhejiang Electric Power, 2021, 40(4): 54-64. | |
11 | TIAN J P, XIONG R, SHEN W X, et al. Deep neural network battery charging curve prediction using 30 points collected in 10 Min[J]. Joule, 2021, 5(6): 1521-1534. |
12 | 梁海峰, 袁芃, 高亚静. 基于CNN-Bi-LSTM网络的锂离子电池剩余使用寿命预测[J]. 电力自动化设备, 2021, 41(10): 213-219. |
LIANG H F, YUAN P, GAO Y J. Remaining useful life prediction of lithium-ion battery based on CNN-Bi-LSTM network[J]. Electric Power Automation Equipment, 2021, 41(10): 213-219. | |
13 | PHAM T, LE T, DANG D, et al. ARNS: A data-driven approach for SoH estimation of lithium-ion battery using nested sequence models with considering relaxation effect[J]. IEEE Access, 2022, 10: 117067-117083. |
14 | 王朋凯, 张新燕, 张光昊. 基于ResNet-Bi-LSTM-Attention的锂离子电池剩余使用寿命预测[J]. 储能科学与技术, 2023, 12(4): 1215-1222. |
WANG P K, ZHANG X Y, ZHANG G H. Remaining useful life prediction of lithium-ion batteries based on ResNet-Bi-LSTM-Attention model[J]. Energy Storage Science and Technology, 2023, 12(4): 1215-1222. | |
15 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need[M]. arXiv, 2017. |
16 | 刘芊彤, 邢远秀. 基于VMD-PSO-GRU模型的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2023, 12(1): 236-246. |
LIU Q T, XING Y X. Remaining life prediction of lithium-ion battery based on VMD-PSO-GRU model[J]. Energy Storage Science and Technology, 2023, 12(1): 236-246. | |
17 | 肖浩逸, 何晓霞, 梁佳佳, 等. 一种基于模态分解和机器学习的锂电池寿命预测方法[J]. 储能科学与技术, 2022, 11(12): 3999-4009. |
XIAO H Y, HE X X, LIANG J J, et al. A lithium battery life-prediction method based on mode decomposition and machine learning[J]. Energy Storage Science and Technology, 2022, 11(12): 3999-4009. | |
18 | 郑雪莹, 邓晓刚, 曹玉苹. 基于能量加权高斯过程回归的锂离子电池健康状态预测[J]. 电子测量与仪器学报, 2020, 34(6): 63-69. |
ZHENG X Y, DENG X G, CAO Y P. State of health prediction of lithium-ion batteries based on energy-weighted Gaussian process regression[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(6): 63-69. | |
19 | 陈彦余, 夏向阳, 周文钊, 等. 基于EMD-ARMA的锂离子电池剩余寿命预测[J]. 电力学报, 2021, 36(1): 43-50, 59. |
CHEN Y Y, XIA X Y, ZHOU W Z, et al. Prediction of the lithium-ion battery remaining useful life based on EMD-ARMA[J]. Journal of Electric Power, 2021, 36(1): 43-50, 59. | |
20 | 欧阳名三, 屈琪. 基于SAE-EEMD-GRU的锂离子电池剩余使用寿命预测[J]. 佳木斯大学学报(自然科学版), 2022, 40(2): 43-49. |
MINGSAN O Y, QI Q. Remaining useful life prediction of lithium-ion batteries based on SAE-EEMD-GRU[J]. Journal of Jiamusi University (Natural Science Edition), 2022, 40(2): 43-49. | |
21 | HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. |
22 | TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). May 22-27, 2011, Prague, Czech Republic. IEEE, 2011: 4144-4147. |
23 | CONG X W, ZHANG C P, JIANG J C, et al. A hybrid method for the prediction of the remaining useful life of lithium-ion batteries with accelerated capacity degradation[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 12775-12785. |
24 | SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391. |
25 | 黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15): 3753-3766. |
HUANG K, DING H, GUO Y F, et al. Prediction of remaining useful life of lithium-ion battery based on adaptive data preprocessing and long short-term memory network[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766. |
[1] | Shaohong ZENG, Weixiong WU, Jizhen LIU, Shuangfeng WANG, Shifeng YE, Zhenyu FENG. A review of research on immersion cooling technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. |
[2] | Xin CHEN, Yunwu LI, Xincheng LIANG, Falin LI, Zhidong ZHANG. Battery health state estimation of combined Transformer-GRU based on modal decomposition [J]. Energy Storage Science and Technology, 2023, 12(9): 2927-2936. |
[3] | Jiwei LI, Ruihan LIU, Taolin LU, Long PAN, Changjun MA, Qingbo LI, Zhiyun ZHAO, Wen YANG, Jingying XIE. Early fault diagnosis of lithium-ion battery packs based on improved local outlier detection and standard deviation method [J]. Energy Storage Science and Technology, 2023, 12(9): 2917-2926. |
[4] | Xiangyang ZHOU, Yingjie HU, Jiahao LIANG, Qijie ZHOU, Kang WEN, Song CHEN, Juan YANG, Jingjing TANG. Preparation and lithium storage characteristics of high-performance anode materials based on spheroidized tailings of natural flake graphite [J]. Energy Storage Science and Technology, 2023, 12(9): 2767-2777. |
[5] | Wanwei JIANG, Chengjing LIANG, Li QIAN, Meicheng LIU, Mengxiang ZHU, Jun MA. Regulating tin-based three-dimensional graphene foam and its performance as a lithium-ion battery anode [J]. Energy Storage Science and Technology, 2023, 12(9): 2746-2751. |
[6] | Anhao ZUO, Ruqing FANG, Zhe LI. Kinetic characterization of electrode materials for lithium-ion batteries via single-particle microelectrodes [J]. Energy Storage Science and Technology, 2023, 12(8): 2457-2481. |
[7] | Yu GUO, Yiwei WANG, Juan ZHONG, Jinqiao DU, Jie TIAN, Yan LI, Fangming JIANG. Fault diagnosis method for microinternal short circuits in lithium-ion batteries based on incremental capacity curve [J]. Energy Storage Science and Technology, 2023, 12(8): 2536-2546. |
[8] | Jiaxing YANG, Hengyun ZHANG, Yidong XU. Heat generation analysis for lithium-ion battery components using electrochemical and thermal coupled model [J]. Energy Storage Science and Technology, 2023, 12(8): 2615-2625. |
[9] | Jilu ZHANG, Yuchen DONG, Qiang SONG, Siming YUAN, Xiaodong GUO. Controllable synthesis and electrochemical mechanism related to polycrystalline and single-crystalline Ni-rich layered LiNi0.9Co0.05Mn0.05O2 cathode materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2382-2389. |
[10] | Qingsong ZHANG, Fangwei BAO, Jiangjao NIU. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2263-2270. |
[11] | Hongsheng GUAN, Cheng QIAN, Binghui XU, Bo SUN, Yi REN. SAM-GRU-based fusion neural network for SOC estimation in lithium-ion batteries under a wide range of operating conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2229-2237. |
[12] | Yubo ZHANG, Youyuan WANG, Dongning HUANG, Ziyi WANG, Weigen CHEN. Prognostic method of lithium-ion battery lifetime degradation under various working conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2238-2245. |
[13] | Qinpei CHEN, Xuehui WANG, Wenzhong MI. Experiential study on the toxic and explosive characteristics of thermal runaway gas generated in electric-vehicle lithium-ion battery systems [J]. Energy Storage Science and Technology, 2023, 12(7): 2256-2262. |
[14] | Wenda ZAN, Rui ZHANG, Fei DING. Development and application of electrochemical models for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2302-2318. |
[15] | Maosong FAN, Mengmeng GENG, Guangjin ZHAO, Kai YANG, Fangfang WANG, Hao LIU. Research on battery sorting technology for echelon utilization based on multifrequency impedance [J]. Energy Storage Science and Technology, 2023, 12(7): 2202-2210. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||