1 |
魏文强. 我国电动汽车的能效与经济性分析[J]. 时代汽车, 2023(4): 98-100.
|
|
WEI W Q. Analysis of energy efficiency and economy of electric vehicles in China[J]. Auto Time, 2023(4): 98-100.
|
2 |
林烨, 黄国忠, 肖凌云, 等. 基于深度调查的电动汽车火灾原因分析技术[J]. 消防科学与技术, 2021, 40(1): 145-148.
|
|
LIN Y, HUANG G Z, XIAO L Y, et al. An analysis technology of electric vehicle fire based on in-depth investigation[J]. Fire Science and Technology, 2021, 40(1): 145-148.
|
3 |
SUN P Y, BISSCHOP R, NIU H C, et al. A review of battery fires in electric vehicles[J]. Fire Technology, 2020, 56(4): 1361-1410.
|
4 |
RISE. Toxic gases from fire in electric vehicles[R]. Swedish: RISE, 2020.
|
5 |
董海斌, 张少禹, 李毅, 等. NCM811高比能锂离子电池热失控火灾特性[J]. 储能科学与技术, 2019, 8(S1): 65-70.
|
|
DONG H B, ZHANG S Y, LI Y, et al. Thermal runaway fire characteristics of lithium ion batteries with high specific energy NCM811[J]. Energy Storage Science and Technology, 2019, 8(S1): 65-70.
|
6 |
ZHANG S S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2): 1379-1394.
|
7 |
史晋宜, 庞景和, 王威. GC-MS用于锂离子电池电解液成分分析研究[J]. 科技创新与应用, 2017(35): 191-192.
|
|
SHI J Y, PANG J H, WANG W. GC-MS applied to the analysis of electrolyte composition of lithium ion batteries[J]. Technology Innovation A, 2017(35): 191-192.
|
8 |
HOU J X, LU L G, WANG L, et al. Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes[J]. Nature Communications, 2020, 11(1): 1-11.
|
9 |
ZHAO H F, NAM P K S, RICHARDS V L, et al. Thermal decomposition studies of EPS foam, polyurethane foam, and epoxy resin (SLA) as patterns for investment casting; analysis of hydrogen cyanide (HCN) from thermal degradation of polyurethane foam[J]. International Journal of Metalcasting, 2019, 13(1): 18-25.
|
10 |
美)J.A.迪安(John A.Dean主编, 魏俊发等译. 兰氏化学手册[M]. [2版]. 北京: 科学出版社, 2003.
|
11 |
张青松, 刘添添, 郝朝龙, 曲奕润, 张伟, 陈达. 锂离子电池热失控气体快速检测及危险性方法[J/OL]. 北京航空航天大学学报. (2022-03-03) [2023-04-26]. https://doi.org/10.13700/j.bh.1001-5965.2021.0668.
|