Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (7): 2079-2094.doi: 10.19799/j.cnki.2095-4239.2023.0295
Previous Articles Next Articles
Yi WANG1(), Xuebing CHEN1, Yuanxi WANG1, Jieyun ZHENG1,2, Xiaosong LIU1,3, Hong LI1,2()
Received:
2023-05-04
Revised:
2023-06-13
Online:
2023-07-05
Published:
2023-07-25
Contact:
Hong LI
E-mail:wangyi@aesit.com.cn;hli@iphy.ac.cn
CLC Number:
Yi WANG, Xuebing CHEN, Yuanxi WANG, Jieyun ZHENG, Xiaosong LIU, Hong LI. Overview of multilevel failure mechanism and analysis technology of energy storage lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2079-2094.
Table 1
Summary of main failure forms and analysis techniques of key materials in battery"
材料 | 失效形式 | 分析技术 |
---|---|---|
正/负极材料 | 结构失效 (相变、颗粒 开裂、剥离) 组成失效 | X射线衍射(X-ray diffraction,XRD)、扫描电子显微镜(scanning electron microscope,SEM)、透射电子显微镜(transmission electron microscopy,TEM)、拉曼光谱(Raman)、纳米-电子计算机断层扫描仪(nano-computerized tomography,nano-CT)、中子衍射(neutron diffraction,ND)、扩展X射线吸收精细谱(extended X-ray absorption fine structure,EXAFS) 电感耦合等离子体发射光谱仪(inductively coupled plasma optical emission spectrometer,ICP-OES)、X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)、飞行时间-二次离子质谱(time of flight secondary ion mass spectrometry,TOF-SIMS)、软X射线吸收谱(soft X-ray absorption spectroscopy,sXAS)、X射线能谱(energy dispersive spectrometer,EDS)、X射线荧光光谱仪(X-ray fluorescence,XRF) |
表界面失效 | XPS、TOF-SIMS、俄歇电子能谱(Auger electron spectroscopy,AES)、EDS、红外光谱仪(Fourier transform infrared reflection,FTIR)、冷冻电镜(cryo-transmission electron microscope,cryo-TEM)、原子力显微镜(atomic force microscope,AFM) | |
电解液 | 氧化/还原分解、组成变化 | 核磁共振(nuclear magnetic resonance,NMR)、气相色谱质谱联用仪(gas chromatography-mass spectrometry,GC-MS)、液相色谱质谱联用(liquid chromatograph-mass spectrometer,LC-MS)、离子色谱(ion chromatography,IC) |
隔膜 | 氧化、堵孔、 刺穿等 | EDS、XPS、TOF-SIMS、FTIR、SEM |
1 | 宋丽, 陈永明. 现代电力系统中储能技术的应用作用分析[J]. 电子元器件与信息技术, 2019, 3(12): 94-95. |
SONG L, CHEN Y M. Analysis on the application of energy storage technology in modern power system[J]. Electronic Components and Information Technology, 2019, 3(12): 94-95. | |
2 | 元博, 张运洲, 鲁刚, 等. 电力系统中储能发展前景及应用关键问题研究[J]. 中国电力, 2019, 52(3): 1-8. |
YUAN B, ZHANG Y Z, LU G, et al. Research on key issues of energy storage development and application in power systems[J]. Electric Power, 2019, 52(3): 1-8. | |
3 | 马静, 江依义, 沈旻, 等. 锂离子电池储能产业发展现状与对策建议[J]. 浙江化工, 2022, 53(12): 17-23. |
MA J, JIANG Y Y, SHEN M, et al. Development status and countermeasures of lithium-ion battery energy storage industry[J]. Zhejiang Chemical Industry, 2022, 53(12): 17-23. | |
4 | 李晨尧, 李孝斌, 武军利, 等. 灭火剂抑制锂电池火灾研究现状分析[J]. 安全, 2023, 44(1): 54-59. |
LI C Y, LI X B, WU J L, et al. Analysis on current research status of lithium-ion battery fire suppression by fire extinguishing agents[J]. Safety & Security, 2023, 44(1): 54-59. | |
5 | 贾超, 赵霞, 张妍. 锂电池储能电站火灾风险分析与对策探讨[J]. 电力安全技术, 2022, 24(6): 23-26. |
JIA C, ZHAO X, ZHANG Y. Fire risk analysis and countermeasures of lithium battery energy storage power station[J]. Electric Safety Technology, 2022, 24(6): 23-26. | |
6 | 王其钰, 王朔, 张杰男, 等. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5): 1008-1025. |
WANG Q Y, WANG S, ZHANG J N, et al. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025. | |
7 | 王其钰, 王朔, 周格, 等. 锂电池失效分析与研究进展[J]. 物理学报, 2018, 67(12): 279-290. |
WANG Q Y, WANG S, ZHOU G, et al. Progress on the failure analysis of lithium battery[J]. Acta Physica Sinica, 2018, 67(12): 279-290. | |
8 | 黄海宁. 磷酸铁锂电池循环寿命衰减和寿命预测[J]. 电源技术, 2022, 46(4): 376-379. |
HUANG H N. Cycle life fading of LiFePO4 lithium-ion battery and its life prediction[J]. Chinese Journal of Power Sources, 2022, 46(4): 376-379. | |
9 | 刘晓梅, 姚斌, 谢乐琼, 等. 磷酸铁锂动力电池常温循环衰减机理分析[J]. 储能科学与技术, 2021, 10(04): 1338-1343. |
LIU X M, YAO B, XIE L Q, et al. Analysis of the capacity fading mechanism in lithium iron phosphate power batteries cycled at ambient temperatures[J]. Energy Storage Science and Technology, 2021, 10(4): 1338-1343. | |
10 | 苗萌, 马冬梅, 贺狄龙. 磷酸铁锂动力电池失效的研究进展[J]. 电源技术, 2016, 40(2): 458-461. |
MIAO M, MA D M, HE D L. Progress in failure of power LiFePO4 batteries[J]. Chinese Journal of Power Sources, 2016, 40(2): 458-461. | |
11 | ZHANG W J. Structure and performance of LiFePO4 cathode materials: A review[J]. Journal of Power Sources, 2011, 196(6): 2962-2970. |
12 | SCIPIONI R, JØRGENSEN P S, HJELM J, et al. Degradation studies on LiFePO4 cathode[J]. ECS Transactions, 2015, 64(22): 97-106. |
13 | WANG L, QIU J Y, WANG X D, et al. Insights for understanding multiscale degradation of LiFePO4 cathodes[J]. eScience, 2022, 2(2): 125-137. |
14 | LIN N, JIA Z, WANG Z H, et al. Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam-scanning electron microscopy[J]. Journal of Power Sources, 2017, 365: 235-239. |
15 | AURBACH D. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics, 2002, 148(3/4): 405-416. |
16 | VETTER J, NOVÁK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147(1/2): 269-281. |
17 | 张杰男, 汪君洋, 吕迎春, 等. 锂电池研究中的X射线多晶衍射实验与分析方法综述[J]. 储能科学与技术, 2019, 8(3): 443-467. |
ZHANG J N, WANG J Y, LYU Y C, et al. Experimental measurement and analysis methods of polycrystalline X-ray diffraction for lithium batteries[J]. Energy Storage Science and Technology, 2019, 8(3): 443-467. | |
18 | ZHU Y L, ZHU J G, JIANG B, et al. Insights on the degradation mechanism for large format prismatic graphite/LiFePO4 battery cycled under elevated temperature[J]. Journal of Energy Storage, 2023, 60: doi: 10.1016/j.est.2023.106624. |
19 | TIAN F, BEN L B, YU H L, et al. Understanding high-temperature cycling-induced crack evolution and associated atomic-scale structure in a Ni-rich LiNi0.8Co0.1Mn0.1O2 layered cathode material[J]. Nano Energy, 2022, 98: doi: 10.1016/j.nanoen.2022.107222. |
20 | JIN H F, LIU Z, TENG Y M, et al. A comparison study of capacity degradation mechanism of LiFePO4-based lithium ion cells[J]. Journal of Power Sources, 2009, 189(1): 445-448. |
21 | LI D J, DANILOV D L, XIE J, et al. Degradation mechanisms of C6/LiFePO4 batteries: Experimental analyses of calendar aging[J]. Electrochimica Acta, 2016, 190: 1124-1133. |
22 | ZHOU G, SUN X R, LI Q H, et al. Mn ion dissolution mechanism for lithium-ion battery with LiMn2O4 cathode: in situ ultraviolet-visible spectroscopy and ab initio molecular dynamics simulations[J]. The Journal of Physical Chemistry Letters, 2020, 11(8): 3051-3057. |
23 | ZHAN C, WU T P, LU J, et al. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes-A critical review[J]. Energy & Environmental Science, 2018, 11(2): 243-257. |
24 | 周格. 锂离子电池失效分析——过渡金属溶解沉积及产气研究[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2019. |
25 | 姚斌, 滕国鹏, 刘晓梅, 等. 磷酸铁锂电池高温存储性能衰减机理[J]. 电源技术, 2018, 42(7): 955-958. |
YAO B, TENG G P, LIU X M, et al. Mechanism of calendar life fading of high temperature stored LiFePO4-based Li-ion cells[J]. Chinese Journal of Power Sources, 2018, 42(7): 955-958. | |
26 | XU J J, ZHANG J X, POLLARD T P, et al. Electrolyte design for Li-ion batteries under extreme operating conditions[J]. Nature, 2023, 614(7949): 694-700. |
27 | AGUBRA V, FERGUS J. Lithium ion battery anode aging mechanisms[J]. Materials, 2013, 6(4): 1310-1325. |
28 | EDSTRÖM K, GUSTAFSSON T, THOMAS J O. The cathode-electrolyte interface in the Li-ion battery[J]. Electrochimica Acta, 2004, 50(2/3): 397-403. |
29 | ZHENG Y, HE Y B, QIAN K, et al. Effects of state of charge on the degradation of LiFePO4/graphite batteries during accelerated storage test[J]. Journal of Alloys and Compounds, 2015, 639: 406-414. |
30 | WALDMANN T, ITURRONDOBEITIA A, KASPER M, et al. Review—Post-mortem analysis of aged lithium-ion batteries: Disassembly methodology and physico-chemical analysis techniques[J]. Journal of the Electrochemical Society, 2016, 163(10): A2149-A2164. |
31 | 翁素婷, 刘泽鹏, 杨高靖, 等. 冷冻电镜表征锂电池中的辐照敏感材料[J]. 储能科学与技术, 2022, 11(3): 760-780. |
WENG S T, LIU Z P, YANG G J, et al. Cryogenic electron microscopy(cryo-EM)characterizing beam-sensitive materials in lithium metal batteries[J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. | |
32 | ZHENG J Y, ZHENG H, WANG R, et al. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries[J]. Phys Chem Chem Phys, 2014, 16(26): 13229-13238. |
33 | LIU Y K, ZHAO C Z, DU J A, et al. Research progresses of liquid electrolytes in lithium-ion batteries[J]. Small, 2023, 19(8): doi: 1002/smll.202205315. |
34 | THOMPSON L M, HARLOW J E, ELDESOKY A, et al. Study of electrolyte and electrode composition changes vs time in aged Li-ion cells[J]. Journal of the Electrochemical Society, 2021, 168(2): 020532. |
35 | MÖNNIGHOFF X, FRIESEN A, KONERSMANN B, et al. Supercritical carbon dioxide extraction of electrolyte from spent lithium ion batteries and its characterization by gas chromatography with chemical ionization[J]. Journal of Power Sources, 2017, 352: 56-63. |
36 | 孙晓辉, 曾红燕, 李景康. 动力锂离子电池化成过程中电解液组分变化研究[J]. 当代化工研究, 2022(9): 57-59. |
SUN X H, ZENG H Y, LI J K. Study on the change of electrolyte composition during the formation of power lithium ion battery[J]. Modern Chemical Research, 2022(9): 57-59. | |
37 | 陆大班, 林少雄, 胡淑婉, 等. 三元动力锂离子电池不同温度循环失效分析[J]. 安徽大学学报(自然科学版), 2021, 45(1): 92-97. |
LU D B, LIN S X, HU S W, et al. Analysis of cycling performance failure of ternary power lithium ion cell at different temperature[J]. Journal of Anhui University (Natural Science Edition), 2021, 45(1): 92-97. | |
38 | 周江, 刘松涛, 岳仍利. 高比能锂离子电池过充失效机理研究[J]. 电源技术, 2021, 45(12): 1544-1547. |
ZHOU J, LIU S T, YUE R L. Study on overcharge failure mechanism of high specific energy lithium-ion power battery[J]. Chinese Journal of Power Sources, 2021, 45(12): 1544-1547. | |
39 | KLEIN S, HARTE P, VAN WICKEREN S, et al. Re-evaluating common electrolyte additives for high-voltage lithium ion batteries[J]. Cell Reports Physical Science, 2021, 2(8): doi: 1016/j.xcrp.2021. 100521. |
40 | 邓林旺, 冯天宇, 舒时伟, 等. 锂离子电池无损析锂检测研究进展[J]. 储能科学与技术, 2023, 12(1): 263-277. |
DENG L W, FENG T Y, SHU S W, et al. Research progress on nondestructive detection of lithium evolution in lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(1): 263-277. | |
41 | 樊亚平, 晏莉琴, 简德超, 等. 锂离子电池失效中析锂现象的原位检测方法综述[J]. 储能科学与技术, 2019, 8(6): 1040-1049. |
FAN Y P, YAN L Q, JIAN D C, et al. In situ detection of lithium dendrite in the failure of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1040-1049. | |
42 | DOWNIE L E, KRAUSE L J, BURNS J C, et al. In situ detection of lithium plating on graphite electrodes by electrochemical calorimetry[J]. Journal of the Electrochemical Society, 2013, 160(4): A588-A594. |
43 | 张剑波, 苏来锁, 李新宇, 等. 基于锂离子电池老化行为的析锂检测[J]. 电化学, 2016, 22(6): 607-616. |
ZHANG J B, SU L S, LI X Y, et al. Lithium plating identification from degradation behaviors of lithium-ion cells[J]. Journal of Electrochemistry, 2016, 22(6): 607-616. | |
44 | WALDMANN T, WILKA M, KASPER M, et al. Temperature dependent ageing mechanisms in lithium-ion batteries-A post-mortem study[J]. Journal of Power Sources, 2014, 262: 129-135. |
45 | DOLLÉ M, ORSINI F, GOZDZ A S, et al. Development of reliable three-electrode impedance measurements in plastic Li-ion batteries[J]. Journal of the Electrochemical Society, 2001, 148(8): A851. |
46 | 朱振东, 吴欢欢, 张峥, 等. 锂离子电池析锂及析锂回嵌行为的三电极分析[J]. 储能科学与技术, 2021, 10(2): 448-453. |
ZHU Z D, WU H H, ZHANG Z, et al. Three-electrode analysis of lithium evolution and lithium intercalation behavior in lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(2): 448-453. | |
47 | PETZL M, DANZER M A. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries[J]. Journal of Power Sources, 2014, 254: 80-87. |
48 | UHLMANN C, ILLIG J, ENDER M, et al. In situ detection of lithium metal plating on graphite in experimental cells[J]. Journal of Power Sources, 2015, 279: 428-438. |
49 | BITZER B, GRUHLE A. A new method for detecting lithium plating by measuring the cell thickness[J]. Journal of Power Sources, 2014, 262: 297-302. |
50 | GRIMSMANN F, GERBERT T, BRAUCHLE F, et al. Determining the maximum charging currents of lithium-ion cells for small charge quantities[J]. Journal of Power Sources, 2017, 365: 12-16. |
51 | 邓哲, 黄震宇, 刘磊, 等. 超声技术在锂离子电池表征中的应用[J]. 储能科学与技术, 2019, 8(6): 1033-1039. |
DENG Z, HUANG Z Y, LIU L, et al. Applications of ultrasound technique in characterization of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1033-1039. | |
52 | FANG Y, SMITH A J, LINDSTRÖM R W, et al. Quantifying lithium lost to plating and formation of the solid-electrolyte interphase in graphite and commercial battery components[J]. Applied Materials Today, 2022, 28: doi: 0.1016/j.apmt. 2022.101527. |
53 | 孙涛, 沈腾腾, 刘昕, 等. 滴定-气相色谱技术在锂离子电池析锂定量检测中的应用[J]. 储能科学与技术, 2022, 11(8): 2564-2573. |
SUN T, SHEN T T, LIU X, et al. Application of titration-gas chromatography technology in quantitative detection of lithium evolution from lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(8): 2564-2573. | |
54 | 杨鹏. 锂离子电池容量衰减的研究[D]. 上海: 上海交通大学, 2013.YANG P. Study on capacity attenuation of lithium ion battery[D]. Shanghai: Shanghai Jiao Tong University, 2013. |
55 | CHANNAGIRI S A, NAGPURE S C, BABU S S, et al. Porosity and phase fraction evolution with aging in lithium iron phosphate battery cathodes[J]. Journal of Power Sources, 2013, 243: 750-757. |
56 | 杨丽杰. 锂离子电池石墨类碳负极的容量衰减机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
57 | 宋岚, 熊若愚, 宋华雄, 等. 锂离子电池多尺度非均匀性概述[J]. 储能科学与技术, 2022, 11(2): 487-502. |
SONG L, XIONG R Y, SONG H X, et al. Multiscale nonuniformity of lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(2): 487-502. | |
58 | CAI L, AN K, FENG Z L, et al. In-situ observation of inhomogeneous degradation in large format Li-ion cells by neutron diffraction[J]. Journal of Power Sources, 2013, 236: 163-168. |
59 | BUROW D, SERGEEVA K, CALLES S, et al. Inhomogeneous degradation of graphite anodes in automotive lithium ion batteries under low-temperature pulse cycling conditions[J]. Journal of Power Sources, 2016, 307: 806-814. |
60 | 马天翼, 苏素, 张宗, 等. 计算机断层扫描技术在锂离子电池检测中的应用研究[J]. 重庆理工大学学报(自然科学), 2020, 34(2): 133-139. |
MA T Y, SU S, ZHANG Z, et al. Application of computed tomography in lithium-ion battery detection[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(2): 133-139. | |
61 | MOHANTY D, HOCKADAY E, LI J, et al. Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources[J]. Journal of Power Sources, 2016, 312: 70-79. |
62 | 原蓓蓓, 张峥, 李红, 等. 动力电池排气机理与检测方法研究综述[J]. 中国汽车, 2022, 32(12): 32-39. |
YUAN B B, ZHANG Z, LI H, et al. Review on exhaust mechanism and detection methods of power battery[J]. China Auto, 2022, 32(12): 32-39. | |
63 | ROWDEN B, GARCIA-ARAEZ N. A review of gas evolution in lithium ion batteries[J]. Energy Reports, 2020, 6: 10-18. |
64 | 夏玉佳, 朱振东. 磷酸铁锂锂离子电池化成产气的机理[J]. 电池, 2020, 50(6): 534-537. |
XIA Y J, ZHU Z D. Gas generation mechanism of lithium iron phosphate Li-ion battery during formation[J]. Battery Bimonthly, 2020, 50(6): 534-537. | |
65 | KONG W H, LI H, HUANG X J, et al. Gas evolution behaviors for several cathode materials in lithium-ion batteries[J]. Journal of Power Sources, 2005, 142(1/2): 285-291. |
66 | LANZ M, NOVÁK P. DEMS study of gas evolution at thick graphite electrodes for lithium-ion batteries: The effect of γ-butyrolactone[J]. Journal of Power Sources, 2001, 102(1/2): 277-282. |
67 | SCHMIEGEL J P, LEIßING M, WEDDELING F, et al. Novel in situ gas formation analysis technique using a multilayer pouch bag lithium ion cell equipped with gas sampling port[J]. Journal of the Electrochemical Society, 2020, 167(6): 060516. |
68 | 王其钰, 李泓. 锂电池安全问题及失效分析[J]. 新能源科技, 2021(11): 15-19. |
WANG Q Y, LI H. Safety problems and failure analysis of lithium battery[J]. New Energy Technology, 2021(11): 15-19. | |
69 | 王芳, 王峥, 林春景, 等. 新能源汽车动力电池安全失效潜在原因分析[J]. 储能科学与技术, 2022, 11(5): 1411-1418. |
WANG F, WANG Z, LIN C J, et al. Analysis on potential causes of safety failure of new energy vehicles[J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418. | |
70 | 王莉, 冯旭宁, 薛钢, 等. 锂离子电池安全性评估的ARC测试方法和数据分析[J]. 储能科学与技术, 2018, 7(6): 1261-1270. |
WANG L, FENG X N, XUE G, et al. ARC experimental and data analysis for safety evaluation of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 1261-1270. | |
71 | 刘洋, 陶风波, 孙磊, 等. 磷酸铁锂储能电池热失控及其内部演变机制研究[J]. 高电压技术, 2021, 47(4): 1333-1343. |
LIU Y, TAO F B, SUN L, et al. Research of thermal runaway and internal evolution mechanism of lithium iron phosphate energy storage battery[J]. High Voltage Engineering, 2021, 47(4): 1333-1343. | |
72 | 曹文炅, 雷博, 史尤杰, 等. 韩国锂离子电池储能电站安全事故的分析及思考[J]. 储能科学与技术, 2020, 9(5): 1539-1547. |
CAO W J, LEI B, SHI Y J, et al. Ponderation over the recent safety accidents of lithium-ion battery energy storage stations in South Korea[J]. Energy Storage Science and Technology, 2020, 9(5): 1539-1547. | |
73 | 赵家旺, 周荣, 朱永扬, 等. 电动汽车用锂离子电池安全性研究[J]. 电源技术, 2018, 42(8): 1134-1135, 1179. |
ZHAO J W, ZHOU R, ZHU Y Y, et al. Research on safety of lithium-ion battery for electric vehicle[J]. Chinese Journal of Power Sources, 2018, 42(8): 1134-1135, 1179. | |
74 | SIEGEL J B, LIN X F, STEFANOPOULOU A G, et al. Neutron imaging of lithium concentration in LFP pouch cell battery[J]. Journal of the Electrochemical Society, 2011, 158(5): A523. |
75 | YU W L, YU Z A, CUI Y, et al. Degradation and speciation of Li salts during XPS analysis for battery research[J]. ACS Energy Letters, 2022, 7(10): 3270-3275. |
[1] | Shuqin LIU, Xiaoyan WANG, Zhendong ZHANG, Zhenxia DUAN. Experimental and simulation research on liquid-cooling system of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2023, 12(7): 2155-2165. |
[2] | Qingsong ZHANG, Fangwei BAO, Jiangjao NIU. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2263-2270. |
[3] | Yubo ZHANG, Youyuan WANG, Dongning HUANG, Ziyi WANG, Weigen CHEN. Prognostic method of lithium-ion battery lifetime degradation under various working conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2238-2245. |
[4] | Qinpei CHEN, Xuehui WANG, Wenzhong MI. Experiential study on the toxic and explosive characteristics of thermal runaway gas generated in electric-vehicle lithium-ion battery systems [J]. Energy Storage Science and Technology, 2023, 12(7): 2256-2262. |
[5] | Wenda ZAN, Rui ZHANG, Fei DING. Development and application of electrochemical models for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2302-2318. |
[6] | Hongsheng GUAN, Cheng QIAN, Binghui XU, Bo SUN, Yi REN. SAM-GRU-based fusion neural network for SOC estimation in lithium-ion batteries under a wide range of operating conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2229-2237. |
[7] | Maosong FAN, Mengmeng GENG, Guangjin ZHAO, Kai YANG, Fangfang WANG, Hao LIU. Research on battery sorting technology for echelon utilization based on multifrequency impedance [J]. Energy Storage Science and Technology, 2023, 12(7): 2202-2210. |
[8] | Jin LI, Qingsong WANG, Depeng KONG, Xiaodong WANG, Zhenhua YU, Yanfei LE, Xinyan HUANG, Zhenkai HU, Houfu WU, Huabin FANG, Caowei, Shaoyu ZHANG, Ping ZHUO, Ye CHEN, Ziting LI, Wenxin MEI, Yue ZHANG, Lixiang ZHAO, Liang TANG, Zonghou HUANG, Chi CHEN, Yanhu LIU, Yuxi CHU, Xiaoyuan XU, Jin ZHANG, Yikai LI, Rong FENG, Biao YANG, Bo HU, Xiaoying YANG. Research progress on the safety assessment of lithium-ion battery energy storage [J]. Energy Storage Science and Technology, 2023, 12(7): 2282-2301. |
[9] | Liya MA, Baohui GUO. Failure analysis and structure optimization of energy storage module [J]. Energy Storage Science and Technology, 2023, 12(7): 2194-2201. |
[10] | Guangjin ZHAO, Bowen LI, Yuxia HU, Ruifeng DONG, Fangfang WANG. Overview of the echelon utilization technology and engineering application of retired power batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2319-2332. |
[11] | Hongjian WANG, Yongchun LAI, Xianjin SU, Chunbao ZENG, Linyi XU. Solutions for new energy construction projects in extreme operating environments and liquid cooled energy storage [J]. Energy Storage Science and Technology, 2023, 12(7): 2349-2354. |
[12] | Yonghong XU, Yuting WU, Hongguang ZHANG, Fubin YANG, Yan WANG. Experimental study on a micro-compressed air energy storage system based on a pneumatic motor [J]. Energy Storage Science and Technology, 2023, 12(6): 1854-1861. |
[13] | Fang LI, Yongjun MIN, Yong ZHANG. Review of key technology research on the reliability of power lithium batteries based on big data [J]. Energy Storage Science and Technology, 2023, 12(6): 1981-1994. |
[14] | Xiaoxia SUN, Zhonghua GUI, Ziyu GAO, Bingqian ZHOU, Xia LIU, Xinjing ZHANG, Huan GUO, Wen LI, Yong SHENG, Yangli ZHU, Jian ZHOU, Yujie XU. Dynamic characteristics of compressed air energy storage system [J]. Energy Storage Science and Technology, 2023, 12(6): 1840-1853. |
[15] | Wei ZHANG, Shigang LUO, Jie TENG, Yongli BAI. Joint planning of renewable energy and storage considering thermostatically controlled loads aggregation regulation [J]. Energy Storage Science and Technology, 2023, 12(6): 1901-1912. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||