Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (7): 2155-2165.doi: 10.19799/j.cnki.2095-4239.2023.0152
Previous Articles Next Articles
Shuqin LIU1(), Xiaoyan WANG2(), Zhendong ZHANG2, Zhenxia DUAN2
Received:
2023-03-09
Revised:
2023-04-07
Online:
2023-07-05
Published:
2023-07-25
Contact:
Xiaoyan WANG
E-mail:434759407@qq.com;xiaoyan_wang@usst.edu.cn
CLC Number:
Shuqin LIU, Xiaoyan WANG, Zhendong ZHANG, Zhenxia DUAN. Experimental and simulation research on liquid-cooling system of lithium-ion battery packs[J]. Energy Storage Science and Technology, 2023, 12(7): 2155-2165.
Table 1
Specifications of main components in the liquid-cooling experimental system"
部件 | 型号 | 参数 | 功能描述 |
---|---|---|---|
板式换热器 | EATB23-D-24 | 尺寸: 24通道, 315 mm×77 mm 通道体积: 0.031 L 设计压力: 4.5 MPa 设计温度: -180~200 ℃ 热交换功率r: 2~30 kW | 低温端与恒温浴槽连接,高温端与液冷板连接 |
恒温 浴槽 | SC1030 | 尺寸: 420 mm×330 mm×230 mm 设计温度: -10~100 ℃ 精确度: ±0.05 ℃ 流量: 0~13 L/min | 模拟汽车空调系统通过冷却液与液冷式电池热管理系统进行热交换 |
泵 | Gospel PWM/DA | 尺寸: 110 mm×100 mm×70 mm 工作电压: 24 V 流量: 0~25 L/min 最大扬程: 15 m 设计温度: 0~110 ℃ | 提供不同流量的冷却液 |
压力和温度传感器 | PT/PM100 | 螺纹尺寸: M20 mm×1.5 mm 量程: -40~120 ℃/0~2 MPa 精确度: ±2% 输出信号: 4~20 mA 工作电压: 24 V | 测量冷却液的压力与温度 |
稳压 电源 | DPS3010D | 输入电压: (220±10%) V 输出电压: 0~30 V 输出电流: 0~5 A 输出功率: 0~150 W 显示误差: ±0.1% | 供电至系统用电部件 |
流量计 | FHKU-938-6300 | 测量范围: 3~30 L/min 精确度: ±2% 设计温度: -10~100 ℃ 设计压力: 0~20 bar (1 bar=0.1 MPa) 输出信号: 4~20 mA 信号类型: 方波信号 | 测量冷却液流量 |
水箱 | Cruze 1.8 | 容量: 1.8 L | 储存与补偿冷却液 |
数据采集卡 | NI USB-6212 | 输入频率: 400 kS/s 输出频率: 250 kS/s 电压范围: 0~150 V 时间分辨率: 50 ns | 采集电池的温度数据 |
1 | KOORATA P K, PANCHAL S, FRASER R, et al. Combined influence of concentration-dependent properties, local deformation and boundary confinement on the migration of Li-ions in low-expansion electrode particle during lithiation[J]. Journal of Energy Storage, 2022, 52: doi: 10.1016/j.est.2022.104908. |
2 | ZHANG L W, ZHAO P, XU M, et al. Computational identification of the safety regime of Li-ion battery thermal runaway[J]. Applied Energy, 2020, 261: doi: 10.1016/j.apenergy.2019.114440. |
3 | LI W, XIE Y, HU X S, et al. An internal heating strategy for lithium-ion batteries without lithium plating based on self-adaptive alternating current pulse[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 5809-5823. |
4 | WANG H M, SHI W J, HU F, et al. Over-heating triggered thermal runaway behavior for lithium-ion battery with high nickel content in positive electrode[J]. Energy, 2021, 224: doi:10.1016/j.energy. 2021.120072. |
5 | WU X Y, ZHU Z H, ZHANG H Y, et al. Structural optimization of light-weight battery module based on hybrid liquid cooling with high latent heat PCM[J]. International Journal of Heat and Mass Transfer, 2020, 163: doi: 10.1016/j.ijheatmasstransfer.2020.120495. |
6 | LIN J Y, LIU X H, LI S, et al. A review on recent progress, challenges and perspective of battery thermal management system[J]. International Journal of Heat and Mass Transfer, 2021, 167: doi:10.1016/j.ijheatmasstransfer.2020.120834. |
7 | QIAN Z, LI Y M, RAO Z H. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling[J]. Energy Conversion and Management, 2016, 126: 622-631. |
8 | DAMIAN-ASCENCIO C E, SALDAÑA-ROBLES A, HERNANDEZ-GUERRERO A, et al. Numerical modeling of a proton exchange membrane fuel cell with tree-like flow field channels based on an entropy generation analysis[J]. Energy, 2017, 133: 306-316. |
9 | 干年妃, 孙长乐, 刘东旭, 等. 变接触面液冷系统的电池模组温度一致性研究[J]. 湖南大学学报(自然科学版), 2020, 47(6): 34-42. |
GAN N F, SUN C L, LIU D X, et al. Study on temperature consistency of battery module for liquid cooling system with variable contact surface[J]. Journal of Hunan University (Natural Sciences), 2020, 47(6): 34-42. | |
10 | LAI Y X, WU W X, CHEN K, et al. A compact and lightweight liquid-cooled thermal management solution for cylindrical lithium-ion power battery pack[J]. International Journal of Heat and Mass Transfer, 2019, 144: doi: 10.1016/j.ijheatmasstransfer.2019.118581. |
11 | 薛超坦. 基于液冷的纯电动汽车锂电池热管理研究[D]. 长春: 吉林大学, 2017. |
XUE C T. Research on thermal management of lithium battery for pure electric vehicle based on liquid cooling[D]. Changchun: Jilin University, 2017. | |
12 | 马彦, 丁浩, 牟洪元, 等. 基于模糊PID算法的动力电池液体冷却策略[J]. 控制理论与应用, 2021, 38(5): 549-560. |
MA Y, DING H, MU H Y, et al. Liquid cooling strategy of power battery based on fuzzy PID algorithm[J]. Control Theory & Applications, 2021, 38(5): 549-560. | |
13 | E J Q, ZENG Y, JIN Y, et al. Heat dissipation investigation of the power lithium-ion battery module based on orthogonal experiment design and fuzzy grey relation analysis[J]. Energy, 2020, 211: doi: 10.1016/j.energy.2020.118596. |
14 | XIE Y, LIU Y J, FOWLER M, et al. Enhanced optimization algorithm for the structural design of an air-cooled battery pack considering battery lifespan and consistency[J]. International Journal of Energy Research, 2022, 46(15): 24021-24044. |
15 | ZHU Z H, WU X Y, ZHANG H Y, et al. Multi-objective optimization of a liquid cooled battery module with collaborative heat dissipation in both axial and radial directions[J]. International Journal of Heat and Mass Transfer, 2020, 155: doi: 10.1016/j.ijheatmasstransfer.2020.119701. |
16 | 吴青余, 张恒运, 李俊伟. 校准量热法测量锂电池比热容和生热率[J]. 汽车工程, 2020, 42(1): 59-65. |
WU Q Y, ZHANG H Y, LI J W. Calibrated calorimetry for measuring the specific heat capacity and heat generation rate of lithium-ion battery[J]. Automotive Engineering, 2020, 42(1): 59-65. | |
17 | POLES S, RIGONI E, ROBIC T. MOGA-Ⅱ performance on noisy optimization problems[C]//Proceedings of the international conference on bioinspired optimization methods and their applications. Ljubljana: Jozef Stefan Institute, 2004. |
[1] | Yubo ZHANG, Youyuan WANG, Dongning HUANG, Ziyi WANG, Weigen CHEN. Prognostic method of lithium-ion battery lifetime degradation under various working conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2238-2245. |
[2] | Qinpei CHEN, Xuehui WANG, Wenzhong MI. Experiential study on the toxic and explosive characteristics of thermal runaway gas generated in electric-vehicle lithium-ion battery systems [J]. Energy Storage Science and Technology, 2023, 12(7): 2256-2262. |
[3] | Wenda ZAN, Rui ZHANG, Fei DING. Development and application of electrochemical models for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2302-2318. |
[4] | Hongsheng GUAN, Cheng QIAN, Binghui XU, Bo SUN, Yi REN. SAM-GRU-based fusion neural network for SOC estimation in lithium-ion batteries under a wide range of operating conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2229-2237. |
[5] | Maosong FAN, Mengmeng GENG, Guangjin ZHAO, Kai YANG, Fangfang WANG, Hao LIU. Research on battery sorting technology for echelon utilization based on multifrequency impedance [J]. Energy Storage Science and Technology, 2023, 12(7): 2202-2210. |
[6] | Yi WANG, Xuebing CHEN, Yuanxi WANG, Jieyun ZHENG, Xiaosong LIU, Hong LI. Overview of multilevel failure mechanism and analysis technology of energy storage lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2079-2094. |
[7] | Qingsong ZHANG, Fangwei BAO, Jiangjao NIU. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2263-2270. |
[8] | Yuxin CHEN, Jiamu YANG, Dongbo LI, Cheng LIAN, Honglai LIU. Numerical simulation of the vacuum drying process of cylindrical lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1957-1967. |
[9] | Fang LI, Yongjun MIN, Yong ZHANG. Review of key technology research on the reliability of power lithium batteries based on big data [J]. Energy Storage Science and Technology, 2023, 12(6): 1981-1994. |
[10] | Yongli YI, Ran YU, Wu LI, Yi JIN, Zheren DAI. Preparation of Mo, Al-doped Li7La3Zr2O12-based composite solid electrolyte and performance of all-solid-state batterys [J]. Energy Storage Science and Technology, 2023, 12(5): 1490-1499. |
[11] | Linze LI, Xiangwen ZHANG. SOH estimation for lithium-ion batteries based on combination of frequency impedance characteristics [J]. Energy Storage Science and Technology, 2023, 12(5): 1705-1712. |
[12] | Luhao HAN, Ziyang WANG, Xiaolong HE, Chunshan HE, Xiaolong SHI, Bin YAO. The effect of water mist strategies on thermal runaway fire suppression of large-capacity NCM lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(5): 1664-1674. |
[13] | Jintao LI, Yue MU, Jing WANG, Jingyi QIU, Hai MING. Investigation of the structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1636-1654. |
[14] | Ni YANG, Yuefeng SU, Lian WANG, Ning LI, Liang MA, Chen ZHU. Research progress of focused ion beam microscopy in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1283-1294. |
[15] | Xueli CHENG, Weifu ZHANG, Chengcheng LUO, Xiaoya YUAN. Preparation of three-dimensional graphene/Fe3O4 composites by one-step hydrothermal method and their lithium storage performance [J]. Energy Storage Science and Technology, 2023, 12(4): 1066-1074. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||