Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (6): 1981-1994.doi: 10.19799/j.cnki.2095-4239.2023.0316
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Fang LI(), Yongjun MIN(), Yong ZHANG
Received:
2023-05-05
Revised:
2023-05-19
Online:
2023-06-05
Published:
2023-06-21
Contact:
Yongjun MIN
E-mail:lf1830661941@163.com;yjmin@njfu.edu.cn
CLC Number:
Fang LI, Yongjun MIN, Yong ZHANG. Review of key technology research on the reliability of power lithium batteries based on big data[J]. Energy Storage Science and Technology, 2023, 12(6): 1981-1994.
Table 1
A driving segment of an electric bus collected by data platform"
数据类型 | 数据内容 | 数据类型 | 数据内容 |
---|---|---|---|
数据时间 | 2022/3/13 5:48 | 电机转速/(r/min) | 1900 |
车辆状态 | 启动 | 电机转矩/(N·m) | 114 |
充电状态 | 未充电 | 电机温度/℃ | 29 |
车速/(km/h) | 49.8 | 电机控制器输入电压/V | 667.9 |
累计里程/km | 151287.3 | 电机控制器直流母线电流/A | 33 |
总电压/V | 653.5 | 最高电压单体代号 | 10 |
总电流/A | 36.6 | 最高单体电压/V | 3.308 |
SOC/% | 97 | 最低电压单体代号 | 77 |
DC-DC状态 | 工作 | 最低单体电压/V | 3.303 |
绝缘电阻/kΩ | 19012 | 探针最高温度/℃ | 35 |
加速踏板行程/% | 22 | 探针最低温度/℃ | 32 |
制动踏板状态 | 制动关 | 最高报警等级 | 无故障 |
定位状态 | 有效定位(东经/北纬) | 通用报警标志 | — |
定位信息(经纬度) | 120.53°/31.30° | 单体电压(0~335号)/V | 3.303~3.308 |
电机控制器温度/℃ | 29 | 探针温度(0~63号)/℃ | 32~35 |
Table 2
Summary and comparison of fault diagnosis methods"
故障诊断方法 | 算法类型 | 参考文献 | 优点 | 缺点 |
---|---|---|---|---|
机器学习 | 聚类方法 | [ | 避免了单一阈值引起的虚警,准确定位故障 | 聚类参数的选取无明确规则 |
神经网络 | [ | 预测精准度高,可实现未来状态预测 | 需求数据多,易陷入过拟合,调参复杂 | |
集成学习 | [ | |||
统计学和信号学 | 统计指标 | [ | 方法简单,移植性好 | 阈值选择困难,易产生虚警或预警滞后 |
熵理论 | [ | 数据波动时能有效检测异常 | 数据波动达到一定程度故障才能被检测 | |
相关系数 | [ | 算法复杂度低,占用内存小 | 受噪声影响较大 | |
信号分解 | [ | 故障诊断灵敏,能识别早期细微故障征兆 | 在线应用受限 | |
状态表示法 | [ | |||
融合模型 | 统计指标+神经网络 | [ | 统计学与神经网络的故障诊断结果互为验证 | 单体参数的分布情况未知 |
统计指标/信号分解+聚类方法 | [ | 分级诊断节约平台内存,可在早期提前发现潜在故障 | 融合诊断模型构建复杂 | |
信号分解+孤立森林 | [ |
Table 3
Summary and comparison of SOH estimation methods"
SOH预估方法 | 算法类型/IC曲线提取方法 | 参考文献 | 优点 | 缺点 | 量化指标(SOH预估) |
---|---|---|---|---|---|
基于运行数据 | 神经网络 | [ | 预测精度高,对序列数据有良好的拟合跟踪能力 | 需求数据多,易陷入过拟合,调参复杂 | 最大相对误差为4.5%[ |
贝叶斯网络 | [ | 概率模型实现了泛化与训练的平衡 | 核函数的选取对模型性能影响较大 | 最大绝对误差(mean absolute error,MAE)为4%[ | |
高斯过程回归 | [ | ||||
箱线图 | [ | 易于实现,移植性好 | 无法量化电池SOH | — | |
基于增量容量 分析法 | 离散IC提取 | [ | IC提取更简单,减少内存消耗 | 计算易受噪声影响 | — |
结合等效电路 | [ | 提高了SOH预估精度 | 参数辨识复杂 | 最大MAE为1.5%[ | |
结合单体串并联的电路结构 | [ | 考虑了单体与电池模组的关系 | 单体不一致会影响模型性能 | 平均RMSE为2.04% | |
结合插值法 | [ | 弥补了离散数据的缺点 | IC曲线光滑性不高 | 最大RMSE为1.61% | |
结合支持向量回归 | [ | 改善了由于精度导致无法提取IC曲线的情况 | 支持向量回归处理大数据运行时间过长 | 平均相对误差为4% |
1 | SANGUESA J A, TORRES-SANZ V, GARRIDO P, et al. A review on electric vehicles: Technologies and challenges[J]. Smart Cities, 2021, 4(1): 372-404. |
2 | HASAN M K, MAHMUD M, AHASAN HABIB A K M, et al. Review of electric vehicle energy storage and management system: Standards, issues, and challenges[J]. Journal of Energy Storage, 2021, 41: doi:10.1016/j.est.2021.102940. |
3 | GANDOMAN F H, AHMADI A, VAN DEN BOSSCHE P, et al. Status and future perspectives of reliability assessment for electric vehicles[J]. Reliability Engineering & System Safety, 2019, 183: 1-16. |
4 | GANDOMAN F H, JAGUEMONT J, GOUTAM S, et al. Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges[J]. Applied Energy, 2019, 251: doi: 10.1016/j.apenergy.2019.113343. |
5 | ZHANG X H, LI Z, LUO L G, et al. A review on thermal management of lithium-ion batteries for electric vehicles[J]. Energy, 2022, 238: doi: 10.1016/j.energy.2021.121652. |
6 | 王震坡, 袁昌贵, 李晓宇. 新能源汽车动力电池安全管理技术挑战与发展趋势分析[J]. 汽车工程, 2020, 42(12): 1606-1620. |
WANG Z P, YUAN C G, LI X Y. An analysis on challenge and development trend of safety management technologies for traction battery in new energy vehicles[J]. Automotive Engineering, 2020, 42(12): 1606-1620. | |
7 | 佘承其, 张照生, 刘鹏, 等. 大数据分析技术在新能源汽车行业的应用综述——基于新能源汽车运行大数据[J]. 机械工程学报, 2019, 55(20): 3-16. |
SHE C Q, ZHANG Z S, LIU P, et al. Overview of the application of big data analysis technology in new energy vehicle industry: Based on operating big data of new energy vehicle[J]. Journal of Mechanical Engineering, 2019, 55(20): 3-16. | |
8 | 何文轩, 耿磊, 姚芳. 电动汽车动力锂离子电池可靠性关键技术综述[J/OL]. 电源学报: 1-21[2022-08-29]. http://kns.cnki.net/kcms/detail/12.1420.tm.20220216.1529.002.html. |
9 | PEVEC D, VDOVIC H, GACE I, et al. Distributed data platform for automotive industry: A robust solution for tackling big challenges of big data in transportation science[C]//2019 15th International Conference on Telecommunications (ConTEL). Graz, Austria. IEEE, 2019: 1-8. |
10 | LV Z H, QIAO L, CAI K, et al. Big data analysis technology for electric vehicle networks in smart cities[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1807-1816. |
11 | 顾荣. 大数据处理技术与系统研究[D]. 南京: 南京大学, 2016. |
GU R. Research on big data processing technology and system[D]. Nanjing: Nanjing University, 2016. | |
12 | ZHOU L T, ZHAO Y, LI D, et al. State-of-health estimation for LiFePO4 battery system on real-world electric vehicles considering aging stage[J]. IEEE Transactions on Transportation Electrification, 2022, 8(2): 1724-1733. |
13 | 中华人民共和国工业与信息化部. GB/T 32960—2016电动汽车远程服务与管理系统技术规范[S]. 北京: 中国标准出版社, 2016. |
Ministry of Industry and Information Technology in China. GB/T 32960—2016 Technical Specifications of Remote Service and Management System for Electric Vehicles[S]. Beijing: Standards Press of China, 2016. | |
14 | WU X G, LI M Z, DU J Y, et al. SOC prediction method based on battery pack aging and consistency deviation of thermoelectric characteristics[J]. Energy Reports, 2022, 8: 2262-2272. |
15 | SUN Z Y, WANG Z P, CHEN Y, et al. Modified relative entropy-based lithium-ion battery pack online short-circuit detection for electric vehicle[J]. IEEE Transactions on Transportation Electrification, 2022, 8(2): 1710-1723. |
16 | HOU Y K, ZHANG Z S, LIU P, et al. Research on a novel data-driven aging estimation method for battery systems in real-world electric vehicles[J]. Advances in Mechanical Engineering, 2021, 13(7): doi: 10.1177/16878140211027735. |
17 | 王安晨. 基于多源信息融合的车载电池健康状态评估方法研究[D]. 南京: 南京林业大学, 2021. |
WANG A C. Research on evaluation method of vehicle battery health based on multi-source information fusion[D]. Nanjing: Nanjing Forestry University, 2021. | |
18 | 梁丹阳, 程相, 郗建国, 等. 基于多特征融合的动力电池RUL预测[J]. 中国测试, 2021, 47(12): 149-156. |
LIANG D Y, CHENG X, XI J G, et al. RUL prediction of power battery based on multi-feature fusion[J]. China Measurement & Testing Technology, 2021, 47(12): 149-156. | |
19 | HUO Q, MA Z K, ZHAO X S, et al. Bayesian network based state-of-health estimation for battery on electric vehicle application and its validation through real-world data[J]. IEEE Access, 2021, 9: 11328-11341. |
20 | LI S Q, HE H W, LI J W. Big data driven lithium-ion battery modeling method based on SDAE-ELM algorithm and data pre-processing technology[J]. Applied Energy, 2019, 242: 1259-1273. |
21 | LI S Q, HE H W, ZHAO P F, et al. Data cleaning and restoring method for vehicle battery big data platform[J]. Applied Energy, 2022, 320: doi: 10.1016/j.apenergy.2022.119292. |
22 | HU X S, ZHANG K, LIU K L, et al. Advanced fault diagnosis for lithium-ion battery systems: A review of fault mechanisms, fault features, and diagnosis procedures[J]. IEEE Industrial Electronics Magazine, 2020, 14(3): 65-91. |
23 | XIONG R, SUN W Z, YU Q Q, et al. Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles[J]. Applied Energy, 2020, 279: doi: 10.1016/j.apenergy. 2020.115855. |
24 | HUA Y, LIU X H, ZHOU S D, et al. Toward sustainable reuse of retired lithium-ion batteries from electric vehicles[J]. Resources, Conservation and Recycling, 2021, 168: doi: 10.1016/j.resconrec. 2020.105249. |
25 | LI D, ZHANG Z S, LIU P, et al. DBSCAN-based thermal runaway diagnosis of battery systems for electric vehicles[J]. Energies, 2019, 12(15): 2977. |
26 | LIU P, WANG J, WANG Z P, et al. High-dimensional data abnormity detection based on improved Variance-of-Angle (VOA) algorithm for electric vehicles battery[C]//2019 IEEE Energy Conversion Congress and Exposition (ECCE). September 29-October 3, 2019, Baltimore, MD, USA. IEEE, 2019: 5072-5077. |
27 | 向兆军, 胡凤玲, 罗明华, 等. 基于电池组模型和聚类算法的锂离子电池组SOC不一致估计[J]. 机械工程学报, 2020, 56(18): 154-163. |
XIANG Z J, HU F L, LUO M H, et al. Estimation of SOC inconsistencies in lithium-ion battery packs based on battery pack modeling and clustering algorithm[J]. Journal of Mechanical Engineering, 2020, 56(18): 154-163. | |
28 | HONG J C, WANG Z P, YAO Y T. Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks[J]. Applied Energy, 2019, 251: doi: 10.1016/j.apenergy.2019.113381. |
29 | LI D, LIU P, ZHANG Z S, et al. Battery thermal runaway fault prognosis in electric vehicles based on abnormal heat generation and deep learning algorithms[J]. IEEE Transactions on Power Electronics, 2022, 37(7): 8513-8525. |
30 | LIU Z C, ZHANG Z S, LI D, et al. Battery fault prognosis for electric vehicles based on AOM-ARIMA-LSTM in real time[C]//2022 5th International Conference on Energy, Electrical and Power Engineering (CEEPE). April 22-24, 2022, Chongqing, China. IEEE, 2022: 476-483. |
31 | GAN N F, SUN Z Y, ZHANG Z S, et al. Data-driven fault diagnosis of lithium-ion battery overdischarge in electric vehicles[J]. IEEE Transactions on Power Electronics, 2022, 37(4): 4575-4588. |
32 | WANG Z P, SONG C B, ZHANG L, et al. A data-driven method for battery charging capacity abnormality diagnosis in electric vehicle applications[J]. IEEE Transactions on Transportation Electrification, 2022, 8(1): 990-999. |
33 | QIN W Y, SUN W, YUAN X M, et al. Comparative analysis of battery diagnostic methodologies considering parameter learning process[C]//2021 IEEE 4th International Electrical and Energy Conference (CIEEC). May 28-30, 2021, Wuhan, China. IEEE, 2021: 1-6. |
34 | YIN H, WANG Z P, LIU P, et al. Voltage fault diagnosis of power batteries based on boxplots and gini impurity for electric vehicles[C]//2019 Electric Vehicles International Conference (EV). October 3-4, 2019, Bucharest, Romania. IEEE, 2019: 1-5. |
35 | LIU P, SUN Z Y, WANG Z P, et al. Entropy-based voltage fault diagnosis of battery systems for electric vehicles[J]. Energies, 2018, 11(1): 136. |
36 | LI X Y, WANG Z P. A novel fault diagnosis method for lithium-Ion battery packs of electric vehicles[J]. Measurement, 2018, 116: 402-411. |
37 | HONG J C, WANG Z P, MA F, et al. Thermal runaway prognosis of battery systems using the modified multiscale entropy in real-world electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2269-2278. |
38 | WANG Z P, HONG J C, LIU P, et al. Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles[J]. Applied Energy, 2017, 196: 289-302. |
39 | LI X Y, DAI K W, WANG Z P, et al. Lithium-ion batteries fault diagnostic for electric vehicles using sample entropy analysis method[J]. Journal of Energy Storage, 2020, 27: doi: 10.1016/j.est.2019.101121. |
40 | HONG J C, WANG Z P, QU C H, et al. Fault prognosis and isolation of lithium-ion batteries in electric vehicles considering real-scenario thermal runaway risks[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 88-99. |
41 | JIANG L L, DENG Z W, TANG X L, et al. Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data[J]. Energy, 2021, 234: doi: 10.1016/j.energy. 2021.121266. |
42 | ZHAO Y, LIU P, WANG Z P, et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods[J]. Applied Energy, 2017, 207: 354-362. |
43 | SUN Z Y, HAN Y, WANG Z P, et al. Detection of voltage fault in the battery system of electric vehicles using statistical analysis[J]. Applied Energy, 2022, 307: doi: 10.1016/j.apenergy.2021.118172. |
44 | LI F, MIN Y J, ZHANG Y. A novel method for lithium-ion battery fault diagnosis of electric vehicle based on real-time voltage[J]. Wireless Communications and Mobile Computing, 2022, 2022: 1-17. |
45 | CONG X W, ZHANG C P, JIANG J C, et al. A comprehensive signal-based fault diagnosis method for lithium-ion batteries in electric vehicles[J]. Energies, 2021, 14(5): 1221. |
46 | JIANG J C, LI T Y, CHANG C, et al. Fault diagnosis method for lithium-ion batteries in electric vehicles based on isolated forest algorithm[J]. Journal of Energy Storage, 2022, 50: doi: 10.1016/j.est.2022.104177. |
47 | SUN Z Y, WANG Z P, LIU P, et al. An online data-driven fault diagnosis and thermal runaway early warning for electric vehicle batteries[J]. IEEE Transactions on Power Electronics, 2022, 37(10): 12636-12646. |
48 | LI Y, LIU K L, FOLEY A M, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: doi: 10.1016/j.rser.2019. 109254. |
49 | TIAN H X, QIN P L, LI K, et al. A review of the state of health for lithium-ion batteries: Research status and suggestions[J]. Journal of Cleaner Production, 2020, 261: doi: 10.1016/j.jclepro.2020.120813. |
50 | YANG S J, ZHANG C P, JIANG J C, et al. Review on state-of-health of lithium-ion batteries: Characterizations, estimations and applications[J]. Journal of Cleaner Production, 2021, 314: doi: 10.1016/j.jclepro.2021.128015. |
51 | SONG L J, ZHANG K Y, LIANG T Y, et al. Intelligent state of health estimation for lithium-ion battery pack based on big data analysis[J]. Journal of Energy Storage, 2020, 32: doi: 10.1016/j.est. 2020.101836. |
52 | HONG J C, WANG Z P, CHEN W, et al. Online accurate state of health estimation for battery systems on real-world electric vehicles with variable driving conditions considered[J]. Journal of Cleaner Production, 2021, 294: doi: 10.1016/j.jclepro.2021.125814. |
53 | HE Z G, SHEN X Y, SUN Y Y, et al. State-of-health estimation based on real data of electric vehicles concerning user behavior[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016/j.est.2021.102867. |
54 | LIANG K Z, ZHANG Z S, LIU P, et al. Data-driven ohmic resistance estimation of battery packs for electric vehicles[J]. Energies, 2019, 12(24): 4772. |
55 | HUANG B X, LIAO H Y, WANG Y Q, et al. Prediction and evaluation of health state for power battery based on Ridge linear regression model[J]. Science Progress, 2021, 104(4): doi: 10.1177/00368504211059047. |
56 | 周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39(1): 105-111. |
ZHOU D, SONG X H, LU W B, et al. Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39(1): 105-111. | |
57 | SHE C Q, LI Y, ZOU C F, et al. Offline and online blended machine learning for lithium-ion battery health state estimation[J]. IEEE Transactions on Transportation Electrification, 2022, 8(2): 1604-1618. |
58 | TIAN Z Y, TU L, TIAN C, et al. Understanding battery degradation phenomenon in real-life electric vehicle use based on big data[C]//2017 3rd International Conference on Big Data Computing and Communications (BIGCOM). August 10-11, 2017, Chengdu, China. IEEE, 2017: 334-339. |
59 | WENG C H, FENG X N, SUN J, et al. State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking[J]. Applied Energy, 2016, 180: 360-368. |
60 | WENG C H, SUN J, PENG H E. A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring[J]. Journal of Power Sources, 2014, 258: 228-237. |
61 | SCHALTZ E, STROE D I, NØRREGAARD K, et al. Incremental capacity analysis applied on electric vehicles for battery state-of-health estimation[J]. IEEE Transactions on Industry Applications, 2021, 57(2): 1810-1817. |
62 | XU Z C, WANG J, LUND P D, et al. Estimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving data[J]. Energy, 2021, 225: doi: 10.1016/j.energy.2021.120160. |
63 | LI X Y, WANG T Y, WU C X, et al. Battery pack state of health prediction based on the electric vehicle management platform data[J]. World Electric Vehicle Journal, 2021, 12(4): 204. |
64 | SHE C Q, ZHANG L, WANG Z P, et al. Battery state-of-health estimation based on incremental capacity analysis method: Synthesizing from cell-level test to real-world application[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 214-223. |
65 | 叶俊涛. 电动汽车电池健康状态在线评估研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
YE J T. On-line evaluation of battery health status of electric vehicle[D]. Harbin: Harbin Institute of Technology, 2020. | |
66 | CHANG C, ZHOU X P, JIANG J C, et al. Micro-fault diagnosis of electric vehicle batteries based on the evolution of battery consistency relative position[J]. Journal of Energy Storage, 2022, 52: doi: 10.1016/j.est.2022.104746. |
67 | LIU P, WU Y Z, SHE C Q, et al. Comparative study of incremental capacity curve determination methods for lithium-ion batteries considering the real-world situation[J]. IEEE Transactions on Power Electronics, 2022, 37(10): 12563-12576. |
68 | ZHENG L F, ZHU J G, LU D D C, et al. Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries[J]. Energy, 2018, 150: 759-769. |
69 | SHE C Q, WANG Z P, SUN F C, et al. Battery aging assessment for real-world electric buses based on incremental capacity analysis and radial basis function neural network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3345-3354. |
70 | STROE D I, SCHALTZ E. Lithium-ion battery state-of-health estimation using the incremental capacity analysis technique[J]. IEEE Transactions on Industry Applications, 2020, 56(1): 678-685. |
71 | 胡杰, 朱雪玲, 何陈, 等. 基于实车数据的电动汽车电池健康状态预测[J]. 汽车工程, 2021, 43(9): 1291-1299, 1313. |
HU J, ZHU X L, HE C, et al. Prediction on battery state of health of electric vehicles based on real vehicle data[J]. Automotive Engineering, 2021, 43(9): 1291-1299, 1313. | |
72 | 肖伟, 钟卫东, 舒小农, 等. 基于大数据的电池健康状态(SoH)的估算及应用[J]. 汽车安全与节能学报, 2019, 10(1): 101-105. |
XIAO W, ZHONG W D, SHU X N, et al. Battery state of health (SoH) estimation method and application based on big data[J]. Journal of Automotive Safety and Engergy, 2019, 10(1): 101-105. | |
73 | 龚贤武, 丁璐, 穆邱倩, 等. 基于实车数据的电动汽车电池健康状态估计[J]. 电源技术, 2021, 45(12): 1577-1580. |
GONG X W, DING L, MU Q Q, et al. SOH estimation of electric vehicle battery based on real segment charging data[J]. Chinese Journal of Power Sources, 2021, 45(12): 1577-1580. |
[1] | Yuxin CHEN, Jiamu YANG, Dongbo LI, Cheng LIAN, Honglai LIU. Numerical simulation of the vacuum drying process of cylindrical lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1957-1967. |
[2] | Yongli YI, Ran YU, Wu LI, Yi JIN, Zheren DAI. Preparation of Mo, Al-doped Li7La3Zr2O12-based composite solid electrolyte and performance of all-solid-state batterys [J]. Energy Storage Science and Technology, 2023, 12(5): 1490-1499. |
[3] | Linze LI, Xiangwen ZHANG. SOH estimation for lithium-ion batteries based on combination of frequency impedance characteristics [J]. Energy Storage Science and Technology, 2023, 12(5): 1705-1712. |
[4] | Luhao HAN, Ziyang WANG, Xiaolong HE, Chunshan HE, Xiaolong SHI, Bin YAO. The effect of water mist strategies on thermal runaway fire suppression of large-capacity NCM lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(5): 1664-1674. |
[5] | Jintao LI, Yue MU, Jing WANG, Jingyi QIU, Hai MING. Investigation of the structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1636-1654. |
[6] | Ni YANG, Yuefeng SU, Lian WANG, Ning LI, Liang MA, Chen ZHU. Research progress of focused ion beam microscopy in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1283-1294. |
[7] | Xueli CHENG, Weifu ZHANG, Chengcheng LUO, Xiaoya YUAN. Preparation of three-dimensional graphene/Fe3O4 composites by one-step hydrothermal method and their lithium storage performance [J]. Energy Storage Science and Technology, 2023, 12(4): 1066-1074. |
[8] | Jinhua SONG, Xinghao ZHANG, Zhenhe FENG, Guangyu CHENG, Honghui GU, Haitao GU, Ke WANG. Degradation mechanisms of SiO x -C composite anode based on in situ reference electrode [J]. Energy Storage Science and Technology, 2023, 12(4): 1059-1065. |
[9] | Liyue HU, Xingyan YAO. Thermal runaway of lithium-ion batteries based on orthogonal test [J]. Energy Storage Science and Technology, 2023, 12(4): 1268-1277. |
[10] | Pengkai WANG, Xinyan ZHANG, Guanghao ZHANG. Remaining useful life prediction of lithium-ion batteries based on ResNet-Bi-LSTM-Attention model [J]. Energy Storage Science and Technology, 2023, 12(4): 1215-1222. |
[11] | Zhi ZHAI, Fujin WANG, Yi DI, Peiyu MA, Zhibin ZHAO, Xuefeng CHEN. Hierarchical alignment transfer learning for lithium-ion battery capacity estimation [J]. Energy Storage Science and Technology, 2023, 12(4): 1223-1233. |
[12] | Yiming YAO, Weiling LUAN, Ying CHEN, Min SUN. Recent progress in aging degradation of lithium-ion battery materials via in-situ optical microscopy [J]. Energy Storage Science and Technology, 2023, 12(3): 777-791. |
[13] | Kuijie LI, Ping LOU, Minyuan GUAN, Jinlong MO, Weixin ZHANG, Yuancheng CAO, Shijie CHENG. A review of multi-dimensional signal evolution and coupling mechanism of lithium-ion battery thermal runaway [J]. Energy Storage Science and Technology, 2023, 12(3): 899-912. |
[14] | Xinhao ZHAO, Liang XU. Improved firefly optimization algorithm to optimize back propagation neural network for state of health estimation of power lithium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(3): 934-940. |
[15] | Zhifu WANG, Wei LUO, Yuan YAN, Song XU, Wenmei HAO, Conglin ZHOU. Fault diagnosis of lithium-ion battery sensors using GAPSO-FNN [J]. Energy Storage Science and Technology, 2023, 12(2): 602-608. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||