Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (4): 1223-1233.doi: 10.19799/j.cnki.2095-4239.2022.0706
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Zhi ZHAI1,2(), Fujin WANG1,2, Yi DI1,2, Peiyu MA1,2, Zhibin ZHAO1,2(), Xuefeng CHEN1,2
Received:
2022-11-30
Revised:
2022-12-30
Online:
2023-04-05
Published:
2023-05-08
Contact:
Zhibin ZHAO
E-mail:zhaizhi@xjtu.edu.cn;zhaozhibin@xjtu.edu.cn
CLC Number:
Zhi ZHAI, Fujin WANG, Yi DI, Peiyu MA, Zhibin ZHAO, Xuefeng CHEN. Hierarchical alignment transfer learning for lithium-ion battery capacity estimation[J]. Energy Storage Science and Technology, 2023, 12(4): 1223-1233.
Table 2
Estimation results of each method on different batteries"
方法 | 误差 | 电池编号 | ||||
---|---|---|---|---|---|---|
3 | 25 | 26 | 28 | 44 | ||
HATL | MSE/% | 0.064 | 0.080 | 0.091 | 0.125 | 0.076 |
MAE/% | 1.786 | 2.278 | 2.340 | 2.325 | 2.016 | |
ResNet | MSE/% | 0.611 | 1.161 | 1.306 | 0.399 | 0.435 |
MAE/% | 6.546 | 10.075 | 10.723 | 5.186 | 5.119 | |
MMD | MSE/% | 0.082 | 0.174 | 0.166 | 0.206 | 0.162 |
MAE/% | 2.504 | 2.704 | 3.600 | 2.659 | 2.911 | |
CORAL | MSE/% | 0.701 | 0.983 | 0.557 | 0.270 | 0.152 |
MAE/% | 8.093 | 9.337 | 7.148 | 3.892 | 1.811 | |
DANN | MSE/% | 0.562 | 0.516 | 1.170 | 0.334 | 0.259 |
MAE/% | 6.798 | 5.221 | 10.524 | 6.798 | 4.263 |
1 | SCHMUCH R, WAGNER R, HÖRPEL G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy, 2018, 3(4): 267-278. |
2 | NYKVIST B, NILSSON M. Rapidly falling costs of battery packs for electric vehicles[J]. Nature Climate Change, 2015, 5(4): 329-332. |
3 | 刘大同, 宋宇晨, 武巍, 等. 锂离子电池组健康状态估计综述[J]. 仪器仪表学报, 2020, 41(11): 1-18. |
LIU D T, SONG Y C, WU W, et al. Review of state of health estimation for lithium-ion battery pack[J]. Chinese Journal of Scientific Instrument, 2020, 41(11): 1-18. | |
4 | SAHA B, GOEBEL K, POLL S, et al. Prognostics methods for battery health monitoring using a Bayesian framework[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(2): 291-296. |
5 | SONG Y C, LIU D T, HOU Y D, et al. Satellite lithium-ion battery remaining useful life estimation with an iterative updated RVM fused with the KF algorithm[J]. Chinese Journal of Aeronautics, 2018, 31(1): 31-40. |
6 | 王亚坤, 杨凯飞, 张婕, 等. 卫星在轨故障案例与人工智能故障诊断[J]. 中国空间科学技术, 2022, 42(1): 16-29. |
WANG Y K, YANG K F, ZHANG J, et al. Case study of in-orbit satellite failures and artificial intelligence based failure detection[J]. Chinese Space Science and Technology, 2022, 42(1): 16-29. | |
7 | 朱伟杰, 史尤杰, 雷博. 锂离子电池储能系统BMS的功能安全分析与设计[J]. 储能科学与技术, 2020, 9(1): 271-278. |
ZHU W J, SHI Y J, LEI B. Functional safety analysis and design of BMS for lithium-ion battery energy storage system[J]. Energy Storage Science and Technology, 2020, 9(1): 271-278. | |
8 | HOSSAIN LIPU M S, HANNAN M A, HUSSAIN A, et al. A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations[J]. Journal of Cleaner Production, 2018, 205: 115-133. |
9 | ZHANG Y, LI Y F. Prognostics and health management of Lithium-ion battery using deep learning methods: A review[J]. Renewable and Sustainable Energy Reviews, 2022, 161: doi: 10.1016/j.rser.2022.112282. |
10 | CHEN L, LÜ Z Q, LIN W L, et al. A new state-of-health estimation method for lithium-ion batteries through the intrinsic relationship between ohmic internal resistance and capacity[J]. Measurement, 2018, 116: 586-595. |
11 | YANG F F, SONG X B, DONG G Z, et al. A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries[J]. Energy, 2019, 171: 1173-1182. |
12 | 刘征宇, 朱诚诚, 尤勇, 等. 面向SOC估计的计及温度和循环次数的锂离子电池组合模型[J]. 仪器仪表学报, 2019, 40(11): 117-127. |
LIU Z Y, ZHU C C, YOU Y, et al. A Lithium-ion battery combined model considering temperature and cycle times for SOC estimation[J]. Chinese Journal of Scientific Instrument, 2019, 40(11): 117-127. | |
13 | 熊然, 王顺利, 于春梅, 等. 基于Thevenin模型和改进扩展卡尔曼的特种机器人锂离子电池SOC估算方法[J]. 储能科学与技术, 2021, 10(2): 695-704. |
XIONG R, WANG S L, YU C M, et al. An estimation method for lithium-ion battery SOC of special robots based on Thevenin model and improved extended Kalman[J]. Energy Storage Science and Technology, 2021, 10(2): 695-704. | |
14 | 戴海峰, 姜波, 魏学哲, 等. 基于充电曲线特征的锂离子电池容量估计[J]. 机械工程学报, 2019, 55(20): 52-59. |
DAI H F, JIANG B, WEI X Z, et al. Capacity estimation of lithium-ion batteries based on charging curve features[J]. Journal of Mechanical Engineering, 2019, 55(20): 52-59. | |
15 | 韩云飞, 谢佳, 蔡涛, 等. 结合高斯过程回归与特征选择的锂离子电池容量估计方法[J]. 储能科学与技术, 2021, 10(4): 1432-1438. |
HAN Y F, XIE J, CAI T, et al. Capacity estimation of lithium-ion batteries based on Gaussian process regression and feature selection[J]. Energy Storage Science and Technology, 2021, 10(4): 1432-1438. | |
16 | 周子游, 刘永刚, 杨阳, 等. 考虑混杂充电数据的锂离子电池容量估计[J]. 机械工程学报, 2021, 57(14): 1-9. |
ZHOU Z Y, LIU Y G, YANG Y, et al. Capacity estimation of lithium ion battery considering hybrid charging data[J]. Journal of Mechanical Engineering, 2021, 57(14): 1-9. | |
17 | 舒星, 刘永刚, 申江卫, 等. 基于改进最小二乘支持向量机与Box-Cox变换的锂离子电池容量预测[J]. 机械工程学报, 2021, 57(14): 118-128. |
SHU X, LIU Y G, SHEN J W, et al. Capacity prediction for lithium-ion batteries based on improved least squares support vector machine and box-cox transformation[J]. Journal of Mechanical Engineering, 2021, 57(14): 118-128. | |
18 | HU X S, XU L, LIN X K, et al. Battery lifetime prognostics[J]. Joule, 2020, 4(2): 310-346. |
19 | RAUF H, KHALID M, ARSHAD N. Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling[J]. Renewable and Sustainable Energy Reviews, 2022, 156: doi: 10.1016/j.rser.2021.111903. |
20 | LI P H, ZHANG Z J, GROSU R, et al. An end-to-end neural network framework for state-of-health estimation and remaining useful life prediction of electric vehicle lithium batteries[J]. Renewable and Sustainable Energy Reviews, 2022, 156: doi: 10.1016/j.rser.2021.111843. |
21 | DU Z K, ZUO L, LI J J, et al. Data-driven estimation of remaining useful lifetime and state of charge for lithium-ion battery[J]. IEEE Transactions on Transportation Electrification, 2022, 8(1): 356-367. |
22 | YANG Y X. A machine-learning prediction method of lithium-ion battery life based on charge process for different applications[J]. Applied Energy, 2021, 292: doi: 10.1016/j.apenergy.2021.116897. |
23 | ZHANG Q S, YANG L, GUO W C, et al. A deep learning method for lithium-ion battery remaining useful life prediction based on sparse segment data via cloud computing system[J]. Energy, 2022, 241: doi: 10.1016/j.energy.2021.122716. |
24 | ZHUANG F Z, QI Z Y, DUAN K Y, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1): 43-76. |
25 | LI Y Y, SHENG H M, CHENG Y H, et al. State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis[J]. Applied Energy, 2020, 277: doi: 10.1016/j.apenergy.2020.115504. |
26 | LIU Y, SHU X, YU H, et al. State of charge prediction framework for lithium-ion batteries incorporating long short-term memory network and transfer learning[J]. Journal of Energy Storage, 2021, 37: doi: 10.1016/j.est.2021.102494. |
27 | LI Y H, LI K, LIU X, et al. Lithium-ion battery capacity estimation—a pruned convolutional neural network approach assisted with transfer learning[J]. Applied Energy, 2021, 285: doi: 10.1016/j.apenergy.2020.116410. |
28 | SHU X, SHEN J W, LI G, et al. A flexible state-of-health prediction scheme for lithium-ion battery packs with long short-term memory network and transfer learning[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2238-2248. |
29 | KIM S, CHOI Y Y, KIM K J, et al. Forecasting state-of-health of lithium-ion batteries using variational long short-term memory with transfer learning[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016/j.est.2021.102893. |
30 | WANG F J, ZHAO Z B, REN J X, et al. A transferable lithium-ion battery remaining useful life prediction method from cycle-consistency of degradation trend[J]. Journal of Power Sources, 2022, 521: doi: 10.1016/j.jpowsour.2022.230975. |
31 | WANG F J, ZHAO Z B, ZHAI Z, et al. Remaining useful life prediction of lithium-ion battery based on cycle-consistency learning[C]//2021 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD). October 21-23, 2021, Nanjing, China. IEEE, 2022: 1-6. |
32 | 陈峥, 赵广达, 沈世全, 等. 基于迁移模型的老化锂离子电池SOC估计[J]. 储能科学与技术, 2021, 10(1): 326-334. |
CHEN Z, ZHAO G D, SHEN S Q, et al. SOC estimation of aging lithium-ion battery based on a migration model[J]. Energy Storage Science and Technology, 2021, 10(1): 326-334. | |
33 | HAN T, WANG Z, MENG H X. End-to-end capacity estimation of Lithium-ion batteries with an enhanced long short-term memory network considering domain adaptation[J]. Journal of Power Sources, 2022, 520: doi: 10.1016/j.jpowsour.2021.230823. |
34 | YE Z, YU J B. State-of-health estimation for lithium-ion batteries using domain adversarial transfer learning[J]. IEEE Transactions on Power Electronics, 2022, 37(3): 3528-3543. |
35 | YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks?[A]. Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2[C]. Cambridge, MA, USA: MIT Press, 2014: 3320-3328. |
36 | NEYSHABUR B, SEDGHI H, ZHANG C Y. What is being transferred in transfer learning? [EB/OL]. 2020. [2021-12-01]. https://arxiv.org/abs/2008.11687. |
37 | BOUSMALIS K, TRIGEORGIS G, SILBERMAN N, et al. Domain separation networks[EB/OL]. 2016. [2021-12-01]. https://arxiv.org/abs/1608.06019. |
38 | OYEWOLE I, CHEHADE A, KIM Y. A controllable deep transfer learning network with multiple domain adaptation for battery state-of-charge estimation[J]. Applied Energy, 2022, 312: doi: 10.1016/j.apenergy.2022.118726. |
39 | MAATEN L V D, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2625. |
40 | GRETTON A, BORGWARDT K M, RASCH M, et al. A kernel two-sample test[J]. Journal of Machine Learning Research, MIT Press, 2012, 13: 723-773. |
41 | DENG Z Y, ZHOU K Y, YANG Y X, et al. Domain attention consistency for multi-source domain adaptation[EB/OL]. 2021. [2021-12-01]. https://arxiv.org/abs/2111.03911. |
42 | ATTIA P M, GROVER A, JIN N, et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning[J]. Nature, 2020, 578(7795): 397-402. |
43 | SUN B C, SAENKO K. Deep coral: Correlation alignment for deep domain adaptation[C]//European Conference on Computer Vision. Cham: Springer, 2016: 443-450. |
44 | GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning-Volume 37. New York: ACM, 2015: 1180-1189. |
[1] | Jinhua SONG, Xinghao ZHANG, Zhenhe FENG, Guangyu CHENG, Honghui GU, Haitao GU, Ke WANG. Degradation mechanisms of SiO x -C composite anode based on in situ reference electrode [J]. Energy Storage Science and Technology, 2023, 12(4): 1059-1065. |
[2] | Liyue HU, Xingyan YAO. Thermal runaway of lithium-ion batteries based on orthogonal test [J]. Energy Storage Science and Technology, 2023, 12(4): 1268-1277. |
[3] | Pengkai WANG, Xinyan ZHANG, Guanghao ZHANG. Remaining useful life prediction of lithium-ion batteries based on ResNet-Bi-LSTM-Attention model [J]. Energy Storage Science and Technology, 2023, 12(4): 1215-1222. |
[4] | Ni YANG, Yuefeng SU, Lian WANG, Ning LI, Liang MA, Chen ZHU. Research progress of focused ion beam microscopy in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1283-1294. |
[5] | Xueli CHENG, Weifu ZHANG, Chengcheng LUO, Xiaoya YUAN. Preparation of three-dimensional graphene/Fe3O4 composites by one-step hydrothermal method and their lithium storage performance [J]. Energy Storage Science and Technology, 2023, 12(4): 1066-1074. |
[6] | Yiming YAO, Weiling LUAN, Ying CHEN, Min SUN. Recent progress in aging degradation of lithium-ion battery materials via in-situ optical microscopy [J]. Energy Storage Science and Technology, 2023, 12(3): 777-791. |
[7] | Kuijie LI, Ping LOU, Minyuan GUAN, Jinlong MO, Weixin ZHANG, Yuancheng CAO, Shijie CHENG. A review of multi-dimensional signal evolution and coupling mechanism of lithium-ion battery thermal runaway [J]. Energy Storage Science and Technology, 2023, 12(3): 899-912. |
[8] | Zhifu WANG, Wei LUO, Yuan YAN, Song XU, Wenmei HAO, Conglin ZHOU. Fault diagnosis of lithium-ion battery sensors using GAPSO-FNN [J]. Energy Storage Science and Technology, 2023, 12(2): 602-608. |
[9] | Deliu ZHANG, Yan ZHANG, Hai WANG, Jiadong WANG, Xuanwen GAO, Chaomeng LIU, Dongrun YANG, Wenbin LUO. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating [J]. Energy Storage Science and Technology, 2023, 12(2): 339-348. |
[10] | Fan YANG, Jiarui HE, Ming LU, Lingxia LU, Miao YU. SOC estimation of lithium-ion batteries based on BP-UKF algorithm [J]. Energy Storage Science and Technology, 2023, 12(2): 552-559. |
[11] | Wenkai ZHU, Xing ZHOU, Yajie LIU, Tao ZHANG, Yuanming SONG. Real time state of charge estimation method of lithium-ion battery based on recursive gated recurrent unit neural network [J]. Energy Storage Science and Technology, 2023, 12(2): 570-578. |
[12] | Yue PAN, Xuebing HAN, Minggao OUYANG, Huahua REN, Wei LIU, Yuejun YAN. Research on the detection algorithm for internal short circuits in lithium-ion batteries and its application to real operating data [J]. Energy Storage Science and Technology, 2023, 12(1): 198-208. |
[13] | Xiaolong HE, Xiaolong SHI, Ziyang WANG, Luhao HAN, Bin YAO. Experimental study on thermal runaway characteristics of vehicle NCM lithium-ion batteries under overcharge, overheating, and their combined effects [J]. Energy Storage Science and Technology, 2023, 12(1): 218-226. |
[14] | Linwang DENG, Tianyu FENG, Shiwei SHU, Bin GUO, Zifeng ZHANG. Nondestructive lithium plating online detection for lithium-ion batteries: A review [J]. Energy Storage Science and Technology, 2023, 12(1): 263-277. |
[15] | Linwang DENG, Tianyu FENG, Shiwei SHU, Zifeng ZHANG, Bin GUO. Review of a fast-charging strategy and technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2879-2890. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||