Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (2): 552-559.doi: 10.19799/j.cnki.2095-4239.2022.0574
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Fan YANG1(), Jiarui HE2, Ming LU1, Lingxia LU1, Miao YU2()
Received:
2022-10-08
Revised:
2022-11-08
Online:
2023-02-05
Published:
2023-02-24
Contact:
Miao YU
E-mail:22060233@zju.edu.cn;zjuyumiao@zju.edu.cn
CLC Number:
Fan YANG, Jiarui HE, Ming LU, Lingxia LU, Miao YU. SOC estimation of lithium-ion batteries based on BP-UKF algorithm[J]. Energy Storage Science and Technology, 2023, 12(2): 552-559.
Table 2
Changes of battery element parameters with SOC"
SOC/% | R0/Ω | R1/Ω | R2/Ω | C1/F | C2/F |
---|---|---|---|---|---|
10 | 0.0151 | 0.1261 | 0.0186 | 3.7881 | 603.5809 |
20 | 0.0035 | 0.0167 | 0.018 | 35.2726 | 884.75 |
30 | 0.0027 | 0.016 | 0.016 | 29.2451 | 907.7039 |
40 | 0.0019 | 0.0043 | 0.0154 | 235.5616 | 995.8001 |
50 | 0.0025 | 0.0065 | 0.0167 | 136.4359 | 881.1511 |
60 | 0.0028 | 0.0064 | 0.0183 | 203.6628 | 744.9572 |
70 | 0.0047 | 0.0174 | 0.0184 | 40.0957 | 550.8873 |
80 | 0.0039 | 0.0122 | 0.0168 | 68.0778 | 651.8157 |
90 | 0.0046 | 0.0203 | 0.0155 | 30.9716 | 688.2432 |
100 | 0.0049 | 0.0283 | 0.0222 | 18.3537 | 651.1505 |
Table 3
Table of algorithm results comparison"
算法 | qk=q0, rk=r0 | qk=5q0, rk=r0 | qk=q0, rk=2r0 | qk=5q0, rk=2r0 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAPE | RMSE | 最大误差 | MAPE | RMSE | 最大误差 | MAPE | RMSE | 最大误差 | MAPE | RMSE | 最大误差 | |
EKF | 0.99% | 0.0055 | 11.51% | 1.11% | 0.0062 | 12.1% | 1.43% | 0.0080 | 13.92% | 1.45% | 0.0081 | 15.2 |
UKF | 0.57% | 0.0015 | 3.86% | 0.84% | 0.0050 | 6.07% | 0.56% | 0.0038 | 4.19% | 1.05% | 0.0060 | 7.46% |
BP-UKF | 0.34% | 0.0006 | 1.30% | 0.40% | 0.0029 | 1.32% | 0.33% | 0.0022 | 1.74% | 0.54% | 0.0044 | 2.18% |
1 | HANNAN M A, LIPU M S H, HUSSAIN A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854. |
2 | 周荔丹, 蔡东鹏, 姚钢, 等. 电池管理系统关键技术综述[J]. 电池, 2019, 49(4): 338-341. |
ZHOU L D, CAI D P, YAO G, et al. Summation of key technology of battery management system[J]. Battery Bimonthly, 2019, 49(4): 338-341. | |
3 | 付诗意, 吕桃林, 闵凡奇, 等. 电动汽车用锂离子电池SOC估算方法综述[J]. 储能科学与技术, 2021, 10(3): 1127-1136. |
FU S Y, LYU T L, MIN F Q, et al. Review of estimation methods on SOC of lithium-ion batteries in electric vehicles[J]. Energy Storage Science and Technology, 2021, 10(3): 1127-1136. | |
4 | WAHYUDDIN M I, PRIAMBODO P S, SUDIBYO H. State of charge (SOC) analysis and modeling battery discharging parameters[C]//2018 4th International Conference on Science and Technology (ICST). August 7-8, 2018, Yogyakarta, Indonesia. IEEE, 2018: 1-5. |
5 | 郭宝甫, 张鹏, 王卫星, 等. 基于OCV-SOC曲线簇的磷酸铁锂电池SOC估算研究[J]. 电源技术, 2019, 43(7): 1125-1128, 1139. |
GUO B F, ZHANG P, WANG W X, et al. Research on SOC estimation of LiFePO4 battery based on OCV-SOC curve cluster[J]. Chinese Journal of Power Sources, 2019, 43(7): 1125-1128, 1139. | |
6 | QAYS M O, BUSWIG Y, HOSSAIN M L, et al. Recent progress and future trends on the state of charge estimation methods to improve battery-storage efficiency: A review[J]. CSEE Journal of Power and Energy Systems, 2020, 8(1): 105-114. |
7 | HIDALGO-REYES J I, GÓMEZ-AGUILAR J F, ALVARADO-MARTÍNEZ V M, et al. Battery state-of-charge estimation using fractional extended Kalman filter with Mittag-Leffler memory[J]. Alexandria Engineering Journal, 2020, 59(4): 1919-1929. |
8 | 张武, 孙士山, 张家福. 基于自适应无迹卡尔曼滤波的动力电池SOC估计[J]. 电源技术, 2021, 45(1): 14-17. |
ZHANG W, SUN S S, ZHANG J F. SOC estimation of power batteries based on adaptive unscented Kalman filter[J]. Chinese Journal of Power Sources, 2021, 45(1): 14-17. | |
9 | CHEN J, OUYANG Q, XU C F, et al. Neural network-based state of charge observer design for lithium-ion batteries[J]. IEEE Transactions on Control Systems Technology, 2018, 26(1): 313-320. |
10 | 苏振浩, 李晓杰, 秦晋, 等. 基于BP人工神经网络的动力电池SOC估算方法[J]. 储能科学与技术, 2019, 8(5): 868-873. |
SU Z H, LI X J, QIN J, et al. SOC estimation method of power battery based on BP artificial neural network[J]. Energy Storage Science and Technology, 2019, 8(5): 868-873. | |
11 | 骆秀江, 张兵, 黄细霞, 等. 基于SVM的锂电池SOC估算[J]. 电源技术, 2016, 40(2): 287-290. |
LUO X J, ZHANG B, HUANG X X, et al. Estimation of lithium battery SOC based on SVM[J]. Chinese Journal of Power Sources, 2016, 40(2): 287-290. | |
12 | LI Y W, WANG C, GONG J F. A combination Kalman filter approach for state of charge estimation of lithium-ion battery considering model uncertainty[J]. Energy, 2016, 109: 933-946. |
13 | ZHANG S W, SUN H, LYU C. A method of SOC estimation for power Li-ion batteries based on equivalent circuit model and extended Kalman filter[C]//2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). May 31-June 2, 2018, Wuhan, China. IEEE, 2018: 2683-2687. |
14 | 董祥祥, 武鹏, 葛传久, 等. 基于自适应无迹卡尔曼滤波的锂电池荷电状态估计[J]. 电工电能新技术, 2021, 40(2): 58-65. |
DONG X X, WU P, GE C J, et al. State of charge estimation of Li-ion battery based on adaptive unscented Kalman filter[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(2): 58-65. | |
15 | HANNAN M A, LIPU M S H, HUSSAIN A, et al. Neural network approach for estimating state of charge of lithium-ion battery using backtracking search algorithm[J]. IEEE Access, 2018, 6: 10069-10079. |
16 | 王帅, 马鸿雁, 窦嘉铭, 等. 基于UGOA-BP的锂电池SOC估算[J]. 储能科学与技术, 2022, 11(1): 258-264. |
WANG S, MA H Y, DOU J M, et al. Estimation of lithium-ion battery state of charge based on UGOA-BP[J]. Energy Storage Science and Technology, 2022, 11(1): 258-264. |
[1] | Wenkai ZHU, Xing ZHOU, Yajie LIU, Tao ZHANG, Yuanming SONG. Real time state of charge estimation method of lithium-ion battery based on recursive gated recurrent unit neural network [J]. Energy Storage Science and Technology, 2023, 12(2): 570-578. |
[2] | Zhifu WANG, Wei LUO, Yuan YAN, Song XU, Wenmei HAO, Conglin ZHOU. Fault diagnosis of lithium-ion battery sensors using GAPSO-FNN [J]. Energy Storage Science and Technology, 2023, 12(2): 602-608. |
[3] | Deliu ZHANG, Yan ZHANG, Hai WANG, Jiadong WANG, Xuanwen GAO, Chaomeng LIU, Dongrun YANG, Wenbin LUO. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating [J]. Energy Storage Science and Technology, 2023, 12(2): 339-348. |
[4] | Yue PAN, Xuebing HAN, Minggao OUYANG, Huahua REN, Wei LIU, Yuejun YAN. Research on the detection algorithm for internal short circuits in lithium-ion batteries and its application to real operating data [J]. Energy Storage Science and Technology, 2023, 12(1): 198-208. |
[5] | Xiaolong HE, Xiaolong SHI, Ziyang WANG, Luhao HAN, Bin YAO. Experimental study on thermal runaway characteristics of vehicle NCM lithium-ion batteries under overcharge, overheating, and their combined effects [J]. Energy Storage Science and Technology, 2023, 12(1): 218-226. |
[6] | Linwang DENG, Tianyu FENG, Shiwei SHU, Bin GUO, Zifeng ZHANG. Nondestructive lithium plating online detection for lithium-ion batteries: A review [J]. Energy Storage Science and Technology, 2023, 12(1): 263-277. |
[7] | Linwang DENG, Tianyu FENG, Shiwei SHU, Zifeng ZHANG, Bin GUO. Review of a fast-charging strategy and technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2879-2890. |
[8] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[9] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[10] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
[11] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[12] | Tao SUN, Tengteng SHEN, Xin LIU, Dongsheng REN, Jinhai LIU, Yuejiu ZHENG, Luyan WANG, Languang LU, Minggao OUYANG. Application of titration gas chromatography technology in the quantitative detection of lithium plating in Li-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2564-2573. |
[13] | Chengshan XU, Borui LU, Mengqi ZHANG, Huaibin WANG, Changyong JIN, Minggao OUYANG, Xuning FENG. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin [J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. |
[14] | Yong MA, Xiaohan LI, Lei SUN, Dongliang GUO, Jinggang YANG, Jianjun LIU, Peng XIAO, Guangjun QIAN. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model [J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611. |
[15] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||