Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (2): 560-569.doi: 10.19799/j.cnki.2095-4239.2022.0611
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Ruijie WANG1,2(), Zhouli HUI1(), Ming YANG1,2()
Received:
2022-10-21
Revised:
2022-11-07
Online:
2023-02-05
Published:
2022-11-25
Contact:
Zhouli HUI, Ming YANG
E-mail:2286944596@qq.com;13994208298@139.com;hgsnje@163.com
CLC Number:
Ruijie WANG, Zhouli HUI, Ming YANG. Gaussian process regression based on indirect health indicators for SOH estimation of lithium battery[J]. Energy Storage Science and Technology, 2023, 12(2): 560-569.
1 | LIN M Q, WU D G, MENG J H, et al. A multi-feature-based multi-model fusion method for state of health estimation of lithium-ion batteries[J]. Journal of Power Sources, 2022, 518: doi: 10.1016/j.jpowsour.2021.230774. |
2 | TIAN H X, QIN P L, LI K, et al. A review of the state of health for lithium-ion batteries: Research status and suggestions[J]. Journal of Cleaner Production, 2020, 261: doi: 10.1016/j.jclepro. 2020.120813. |
3 | RAHIMI-EICHI H, OJHA U, BARONTI F, et al. Battery management system: An overview of its application in the smart grid and electric vehicles[J]. IEEE Industrial Electronics Magazine, 2013, 7(2): 4-16. |
4 | LIN C P, CABRERA J, YANG F F, et al. Battery state of health modeling and remaining useful life prediction through time series model[J]. Applied Energy, 2020, 275: doi: 10.1016/j.apenergy.2020.115338. |
5 | CHEN D, MENG J H, HUANG H Y, et al. An Empirical-data hybrid driven approach for remaining useful life prediction of lithium-ion batteries considering capacity diving[J]. Energy, 2022, 245: doi: 10.1016/j.energy.2022.123222. |
6 | LOVE C T, VIRJI M B V, ROCHELEAU R E, et al. State-of-health monitoring of 18650 4S packs with a single-point impedance diagnostic[J]. Journal of Power Sources, 2014, 266: 512-519. |
7 | PRADYUMNA T K, CHO K, KIM M, et al. Capacity estimation of lithium-ion batteries using convolutional neural network and impedance spectra[J]. Journal of Power Electronics, 2022, 22(5): 850-858. |
8 | PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs[J]. Journal of Power Sources, 2004, 134(2): 277-292. |
9 | WANG Y J, ZHANG C B, CHEN Z H. A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter[J]. Journal of Power Sources, 2015, 279: 306-311. |
10 | YAN W Z, ZHANG B, ZHAO G Q, et al. A battery management system with a lebesgue-sampling-based extended Kalman filter[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3227-3236. |
11 | TULSYAN A, TSAI Y, GOPALUNI R B, et al. State-of-charge estimation in lithium-ion batteries: A particle filter approach[J]. Journal of Power Sources, 2016, 331: 208-223. |
12 | LI J, ADEWUYI K, LOTFI N, et al. A single particle model with chemical/mechanical degradation physics for lithium ion battery state of health (SOH) estimation[J]. Applied Energy, 2018, 212: 1178-1190. |
13 | LIN H Y, KANG L Y, XIE D, et al. Online state-of-health estimation of lithium-ion battery based on incremental capacity curve and BP neural network[J]. Batteries, 2022, 8(4): doi: 10.3390/batteries8040029. |
14 | 戴彦文, 于艾清. 基于健康特征参数的CNN-LSTM&GRU组合锂电池SOH估计[J]. 储能科学与技术, 2022, 11(5): 1641-1649. |
DAI Y W, YU A Q. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation[J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. | |
15 | LI X Y, YUAN C G, WANG Z P. State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression[J]. Energy, 2020, 203: doi: 10.1016/j.energy.2020.117852. |
16 | LI H, PAN D H, CHEN C L P. Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 44(7): 851-862. |
17 | LEWERENZ M, MARONGIU A, WARNECKE A, et al. Differential voltage analysis as a tool for analyzing inhomogeneous aging: A case study for LiFePO4|Graphite cylindrical cells[J]. Journal of Power Sources, 2017, 368: 57-67. |
18 | WEI J W, DONG G Z, CHEN Z H. Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5634-5643. |
19 | WANG Z P, YUAN C G, LI X Y. Lithium battery state-of-health estimation via differential thermal voltammetry with Gaussian process regression[J]. IEEE Transactions on Transportation Electrification, 2021, 7(1): 16-25. |
20 | PAN H H, LÜ Z Q, WANG H M, et al. Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine[J]. Energy, 2018, 160: 466-477. |
21 | LI Y, LIU K L, FOLEY A M, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: doi: 10.1016/j.rser.2019.109254. |
22 | LIU J, CHEN Z Q. Remaining useful life prediction of lithium-ion batteries based on health indicator and Gaussian process regression model[J]. IEEE Access, 2019, 7: 39474-39484. |
23 | HE Y J, SHEN J N, SHEN J F, et al. State of health estimation of lithium-ion batteries: A multiscale Gaussian process regression modeling approach[J]. AIChE Journal, 2015, 61(5): 1589-1600. |
24 | 李放, 闵永军, 王琛, 等. 基于充电过程的锂电池SOH估计和RUL预测[J]. 储能科学与技术, 2022, 11(10): 3316-3327. |
LI F, MIN Y J, WANG C, et al. State of health estimation and remaining useful life predication of lithium batteries using charging process[J]. Energy Storage Science and Technology, 2022, 11(10): 3316-3327. |
[1] | Qingyang CHEN, Yinghui HE, Guanding YU, Mingyang LIU, Chong XU, Zhenming LI. Integrating model- and data-driven methods for accurate state estimation of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 209-217. |
[2] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[3] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[4] | Shuang ZHANG, Jianing XU, Rongrong ZHANG, Zonghao LIU, Chenqi WANG, Ruonan LIU, Minglin RONG. State-of-health characteristics of all-vanadium redox flow batteries [J]. Energy Storage Science and Technology, 2022, 11(12): 4022-4029. |
[5] | Xudong LI, Xiangwen ZHANG. State of health estimation method for lithium-ion batteries based on principal component analysis and whale optimization algorithm-Elman model [J]. Energy Storage Science and Technology, 2022, 11(12): 4010-4021. |
[6] | Fang LI, Yongjun MIN, Chen WANG, Yong ZHANG. State of health estimation and remaining useful life predication of lithium batteries using charging process [J]. Energy Storage Science and Technology, 2022, 11(10): 3316-3327. |
[7] | Sifei ZHOU, Jun LI, Daoming ZHANG, Haoliang XUE, Xiaofei WANG. Statistics method-based optimization of electrolyte conductivity of lithium-ion battery [J]. Energy Storage Science and Technology, 2022, 11(10): 3364-3370. |
[8] | Fan WANG, Yongsheng SHI, Boqin LIU, Yujie ZUO, Zheng FU, Jamsher ALI. Health state estimation of lithium-ion batteries based on attention augmented BiGRU [J]. Energy Storage Science and Technology, 2021, 10(6): 2326-2333. |
[9] | Yongqiang ZHENG, Yue WU, Panpan ZHANG, Bo LEI, Yaodong ZHENG. Research on collaborative control strategy for simultaneous decommissioning based on multi-branch PCS topology of ESS using second-life EV batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2283-2292. |
[10] | Yifeng FENG, Jiani SHEN, Haiying CHE, Zifeng MA, Yijun HE, Wen TAN, Qingheng YANG. State of health prediction for sodium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1407-1415. |
[11] | Yunfei HAN, Jia XIE, Tao CAI, Shijie CHENG. Capacity estimation of lithium-ion batteries based on Gaussian process regression and feature selection [J]. Energy Storage Science and Technology, 2021, 10(4): 1432-1438. |
[12] | Pu REN, Shunli WANG, Mingfang HE, Yongcun FAN, Wen CAO, Wei XIE. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading [J]. Energy Storage Science and Technology, 2021, 10(2): 738-743. |
[13] | Peng LI, Liwei LI, Yuxin YANG. Estimation of lithium-ion battery state of health based on IBOA-PF [J]. Energy Storage Science and Technology, 2021, 10(2): 705-713. |
[14] | WEI Meng, LI Jiabo, LI Zhongyu, YE Min, XU Xinxin. SOC estimation of Li-ion batteries based on Gaussian process regression and UKF [J]. Energy Storage Science and Technology, 2020, 9(4): 1206-1213. |
[15] | LU Ting, YANG Wenqiang. Review of evaluation parameters and methods of lithium batteries throughout its life cycle [J]. Energy Storage Science and Technology, 2020, 9(3): 657-669. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||