Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (1): 209-217.doi: 10.19799/j.cnki.2095-4239.2022.0508
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Qingyang CHEN1(), Yinghui HE1, Guanding YU1(), Mingyang LIU2, Chong XU2, Zhenming LI2
Received:
2022-09-07
Revised:
2022-09-23
Online:
2023-01-05
Published:
2023-02-08
Contact:
Guanding YU
E-mail:22231156@zju.edu.cn;yuguanding@zju.edu.cn
CLC Number:
Qingyang CHEN, Yinghui HE, Guanding YU, Mingyang LIU, Chong XU, Zhenming LI. Integrating model- and data-driven methods for accurate state estimation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(1): 209-217.
1 | 宁娜. 2019上半年中国储能十大事件回顾[J]. 能源, 2019(9): 28-32. |
2 | HE Y, LIU X T, ZHANG C B, et al. A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries[J]. Applied Energy, 2013, 101: 808-814. |
3 | 冯飞, 宋凯, 逯仁贵, 等. 磷酸铁锂电池组均衡控制策略及荷电状态估计算法[J]. 电工技术学报, 2015, 30(1): 22-29. |
FENG F, SONG K, LU R G, et al. Equalization control strategy and SOC estimation for LiFePO4 battery pack[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 22-29. | |
4 | LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
5 | UNGUREAN L, CÂRSTOIU G, MICEA M V, et al. Battery state of health estimation: A structured review of models, methods and commercial devices[J]. International Journal of Energy Research, 2017, 41(2): 151-181. |
6 | DUBARRY M, SVOBODA V, HWU R, et al. Capacity loss in rechargeable lithium cells during cycle life testing: The importance of determining state-of-charge[J]. Journal of Power Sources, 2007, 174(2): 1121-1125. |
7 | 孙冬, 许爽. 梯次利用锂电池健康状态预测[J]. 电工技术学报, 2018, 33(9): 2121-2129. |
SUN D, XU S. State of health prediction of second-use lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2121-2129. | |
8 | CAI Y F, WANG Q T, QI W. D-UKF based state of health estimation for 18650 type lithium battery[C]//2016 IEEE International Conference on Mechatronics and Automation. Harbin, China. IEEE: 754-758. |
9 | HUSSEIN A A. Capacity fade estimation in electric vehicle Li-ion batteries using artificial neural networks[J]. IEEE Transactions on Industry Applications, 2015, 51(3): 2321-2330. |
10 | ANDRE D, APPEL C, SOCZKA-GUTH T, et al. Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries[J]. Journal of Power Sources, 2013, 224: 20-27. |
11 | MICEA M V, UNGUREAN L, CÂRSTOIU G N, et al. Online state-of-health assessment for battery management systems[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(6): 1997-2006. |
12 | 许巧巧. 锂离子动力电池剩余容量估计算法研究与实现[D]. 重庆: 重庆大学, 2013. |
XU Q Q. Research and realization of state of charge estimation of Li-ion power battery[D]. Chongqing: Chongqing University, 2013. | |
13 | WANG Q, LI F, TANG Y, et al. Integrating model-driven and data-driven methods for power system frequency stability assessment and control[J]. IEEE Transactions on Power Systems, 2019, 34(6): 4557-4568. |
14 | Ribeiro M I. Kalman and extended kalman filters: Concept, derivation and properties[J]. Institute for Systems and Robotics, 2004, 43: 46. |
15 | WAN E A, VAN DER MERWE R. The unscented Kalman filter for nonlinear estimation[C]//Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373). Lake Louise, AB, Canada. IEEE: 153-158. |
16 | 林成涛, 王军平, 陈全世. 电动汽车SOC估计方法原理与应用[J]. 电池, 2004, 34(5): 376-378. |
LIN C T, WANG J P, CHEN Q S. Methods for state of charge estimation of EV batteries and their application[J]. Battery Bimonthly, 2004, 34(5): 376-378. | |
17 | BOLE B, KULKARNI C S, DAIGLE M. Adaptation of an electrochemistry-based Li-ion battery model to account for deterioration observed under randomized use[C]// Annual Conference of the PHM Society. 2014. |
[1] | Qiantong LIU, Yuanxiu XING. Remaining life prediction of lithium-ion battery based on VMD-PSO-GRU model [J]. Energy Storage Science and Technology, 2023, 12(1): 236-246. |
[2] | Miaomiao CHEN, Qinjun SHAO, Jian CHEN. Preparation and application of Cr8O21 as cathode material for high specific energy lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 3011-3020. |
[3] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[4] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[5] | Jianping ZHONG, Tao FEI. Defects detection and recognition of lithium battery electrode plate coating based on WOA-BPNN [J]. Energy Storage Science and Technology, 2022, 11(8): 2537-2545. |
[6] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[7] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[8] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[9] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[10] | WU Yida, ZHANG Yi, ZHAN Yuanjie, GUO Yaqi, ZHANG liao, LIU Xingjiang, YU Hailong, ZHAO Wenwu, HUANG Xuejie. The effect of B2O3 modification on the electrochemical properties of LiCoO2 cathode [J]. Energy Storage Science and Technology, 2022, 11(6): 1687-1692. |
[11] | Feng TIAN, Zhijiang CHENG, Handi YANG, Tianxiang YANG. Fault-tolerant control strategy for modular multi-level hybrid converter battery energy storage system [J]. Energy Storage Science and Technology, 2022, 11(5): 1583-1591. |
[12] | Suhang WANG, Jianlin LI, Yaxin LI, Junjie XIONG, Wei ZENG. Research on charging strategy of lithium-ion battery system at low temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. |
[13] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[14] | Bowen CHEN, Ruiguang CUI, Yanbin SHEN, Liwei CHEN. Application of a novel method for characterization of local Young’s modulus in lithium (ion) batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 991-999. |
[15] | Chunhui LIU, Hongbin REN. Research on active equalization of power batteries based on state of charge [J]. Energy Storage Science and Technology, 2022, 11(2): 667-672. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||