Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (1): 263-277.doi: 10.19799/j.cnki.2095-4239.2022.0428
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Linwang DENG1(), Tianyu FENG1(), Shiwei SHU1, Bin GUO1, Zifeng ZHANG2
Received:
2022-07-29
Revised:
2022-09-30
Online:
2023-01-05
Published:
2023-02-08
Contact:
Tianyu FENG
E-mail:deng.linwang@fdbatt.com;feng.tianyu@fdbatt.com
CLC Number:
Linwang DENG, Tianyu FENG, Shiwei SHU, Bin GUO, Zifeng ZHANG. Nondestructive lithium plating online detection for lithium-ion batteries: A review[J]. Energy Storage Science and Technology, 2023, 12(1): 263-277.
Fig. 7
Under the conditions of ambient temperature T=-15 ℃, initial SOC=50%, and charging current I=2 C, charge the battery to a different SOC end state (a) changes in voltage, current and temperature during relaxation Graph; (b) the relationship between differential voltage dV/dt and t; (c) the relationship between differential time dt/dV and V[16]"
Fig. 10
Under ambient temperature T=-15 ℃, initial SOC=50% and charging current I=2 C, the battery is charged to a different SOC for an hour after the end state. A short impedance is performed every 10 minutes spectral test plus a 10 h measurement value, (a) R0, rel (the point where the imaginary part is 0) and (b) |Z|rel, 5 Hz (the real part of the impedance at a frequency of 5 Hz) two resistance values increase with the relaxation time(Different colors represent different changes in SOC) [16]"
Table 1
Comparison of different nondestructive lithium plating detection methods"
检测方法 | 电芯 | BMS应用可行性 | 检测时间 | 量化析锂 | 参考文献 | |
---|---|---|---|---|---|---|
基于锂引起电芯老化的检测方法 | 阿仑尼乌斯曲线法 | Li x Ni1/3Mn1/3Co1/3O2/Li y Mn2O4混合正极和石墨负极的商用18650型电池 | 否 | 长 | 否 | [ |
库仑效率法 | Li[Ni1/3Mn1/3Co1/3]O2/石墨软包 | 否 | 长 | 否 | [ | |
基于锂引起阻抗变化的检测方法 | 阻抗-容量法 | 三元18650型电芯 | 是 | 长 | 否 | [ |
电荷转移阻抗检测法 | NCA/石墨电池 | 是 | 短 | 是 | [ | |
基于锂引起电化学 反应的检测方法 | 负极电位测量法 | 特制三电极电芯 | 是 | 是 | 是 | [ |
小电流放电法 | LFP | 否 | 短 | 是 | [ | |
电压弛豫法 | LFP | 是 | 短 | 是 | [ | |
动态放电检测法 | 三元电芯 | 是 | 短 | 是 | [ | |
电化学阻抗谱分析法 | LFP | 否 | 短 | 否 | [ | |
弛豫时间分布法 | LCO | 否 | 长 | 是 | [ | |
非线性频谱响应分析法 | NMC | 否 | 短 | 是 | [ | |
基于锂引起电芯物理化学特性变化的检测方法 | 厚度测量法 | 软包电芯 | 否 | 长 | 否 | [ |
超声波检测法 | 软包电芯 | 否 | 长 | 否 | [ | |
H2检测法 | 非硬壳类电芯 | 否 | 长 | 否 | [ |
1 | 许晓雄, 邱志军, 官亦标, 等. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术, 2013, 2(4): 331-341. |
XU X X, QIU Z J, GUAN Y B, et al. All-solid-state lithium-ion batteries: State-of-the-art development and perspective[J]. Energy Storage Science and Technology, 2013, 2(4): 331-341. | |
2 | 朱振东, 吴欢欢, 张峥, 等. 锂离子电池析锂及析锂回嵌行为的三电极分析[J]. 储能科学与技术, 2021, 10(2): 448-453. |
ZHU Z D, WU H H, ZHANG Z, et al. Analysis of lithium plating-stripping process in lithium-ion batteries by three-electrode measurements[J]. Energy Storage Science and Technology, 2021, 10(2): 448-453. | |
3 | OSAKA T, HOMMA T, MOMMA T, et al. In situ observation of lithium deposition processes in solid polymer and gel electrolytes[J]. Journal of Electroanalytical Chemistry, 1997, 421(1/2): 153-156. |
4 | CROWTHER O, WEST A C. Effect of electrolyte composition on lithium dendrite growth[J]. Journal of the Electrochemical Society, 2008, 155(11): doi: 10.1149/1.2969424. |
5 | BIEKER G, WINTER M, BIEKER P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(14): 8670-8679. |
6 | STEIGER J, RICHTER G, WENK M, et al. Comparison of the growth of lithium filaments and dendrites under different conditions[J]. Electrochemistry Communications, 2015, 50: 11-14. |
7 | GHASSEMI H, AU M, CHEN N, et al. Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery[J]. Applied Physics Letters, 2011, 99(12): doi: 10.1063/1.3643035. |
8 | LIU X H, ZHONG L, ZHANG L Q, et al. Lithium fiber growth on the anode in a nanowire lithium ion battery during charging[J]. Applied Physics Letters, 2011, 98(18): doi: 10.1063/1.3585655. |
9 | ARAI J, OKADA Y, SUGIYAMA T, et al. In situ solid State7Li NMR observations of lithium metal deposition during overcharge in lithium ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(6): doi: 10.1149/2.0411506jes. |
10 | BHATTACHARYYA R, KEY B, CHEN H L, et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries[J]. Nature Materials, 2010, 9(6): 504-510. |
11 | DOWNIE L E, KRAUSE L J, BURNS J C, et al. In situ detection of lithium plating on graphite electrodes by electrochemical calorimetry[J]. Journal of the Electrochemical Society, 2013, 160(4): doi: 10.1149/2.049304jes. |
12 | ZINTH V, VON LÜDERS C, HOFMANN M, et al. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction[J]. Journal of Power Sources, 2014, 271: 152-159. |
13 | BURNS J C, STEVENS D A, DAHN J R. In-situ detection of lithium plating using high precision coulometry[J]. Journal of the Electrochemical Society, 2015, 162(6): doi: 10.1149/2.0621506jes. |
14 | ANSEÁN D, DUBARRY M, DEVIE A, et al. Operando lithium plating quantification and early detection of a commercial LiFePO4 cell cycled under dynamic driving schedule[J]. Journal of Power Sources, 2017, 356: 36-46. |
15 | PETZL M, DANZER M A. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries[J]. Journal of Power Sources, 2014, 254: 80-87. |
16 | SCHINDLER S, BAUER M, PETZL M, et al. Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells[J]. Journal of Power Sources, 2016, 304: 170-180. |
17 | VON LÜDERS C, ZINTH V, ERHARD S V, et al. Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction[J]. Journal of Power Sources, 2017, 342: 17-23. |
18 | KOLETI U R, DINH T Q, MARCO J. A new on-line method for lithium plating detection in lithium-ion batteries[J]. Journal of Power Sources, 2020, 451: doi: 10.1016/j.jpowsour.2020.227798. |
19 | PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery-A low-temperature aging study[J]. Journal of Power Sources, 2015, 275: 799-807. |
20 | HARTING N, WOLFF N, KREWER U. Identification of lithium plating in lithium-ion batteries using nonlinear frequency response analysis (NFRA)[J]. Electrochimica Acta, 2018, 281: 378-385. |
21 | ZHANG S S, XU K, JOW T R. Study of the charging process of a LiCoO2-based Li-ion battery[J]. Journal of Power Sources, 2006, 160(2): 1349-1354. |
22 | WU M S, CHIANG P C J, LIN J C. Electrochemical investigations on advanced lithium-ion batteries by three-electrode measurements[J]. Journal of the Electrochemical Society, 2005, 152(1): doi: 10.1149/1.1825385. |
23 | WALDMANN T, WILKA M, KASPER M, et al. Temperature dependent ageing mechanisms in Lithium-ion batteries-A Post-Mortem study[J]. Journal of Power Sources, 2014, 262: 129-135. |
24 | 张剑波, 苏来锁, 李新宇, 等. 基于锂离子电池老化行为的析锂检测[J]. 电化学, 2016, 22(6): 607-616. |
ZHANG J B, SU L S, LI X Y, et al. Lithium plating identification from degradation behaviors of lithium-ion cells[J]. Journal of Electrochemistry, 2016, 22(6): 607-616. | |
25 | KOSEOGLOU M, TSIOUMAS E, FERENTINOU D, et al. Lithium plating detection using dynamic electrochemical impedance spectroscopy in lithium-ion batteries[J]. Journal of Power Sources, 2021, 512: doi: 10.1016/j.jpowsour.2021.230508. |
26 | XU L, YANG Y, XIAO Y, et al. In-situ determination of onset lithium plating for safe Li-ion batteries[J]. Journal of Energy Chemistry, 2022, 67: 255-262. |
27 | SMART M C, RATNAKUMAR B V. Effects of electrolyte composition on lithium plating in lithium-ion cells[J]. Journal of the Electrochemical Society, 2011, 158(4): doi: 10.1149/1.3544439. |
28 | SIEG J, BANDLOW J, MITSCH T, et al. Fast charging of an electric vehicle lithium-ion battery at the limit of the lithium deposition process[J]. Journal of Power Sources, 2019, 427: 260-270. |
29 | PAN Y, REN D S, KUANG K, et al. Novel non-destructive detection methods of lithium plating in commercial lithium-ion batteries under dynamic discharging conditions[J]. Journal of Power Sources, 2022, 524: doi: 10.1016/j.jpowsour.2022.231075. |
30 | ILLIG J, SCHMIDT J P, WEISS M, et al. Understanding the impedance spectrum of 18650 LiFePO4-cells[J]. Journal of Power Sources, 2013, 239: 670-679. |
31 | CHEN X, LI L Y, LIU M M, et al. Detection of lithium plating in lithium-ion batteries by distribution of relaxation times[J]. Journal of Power Sources, 2021, 496: doi: 10.1016/j.jpowsour.2021.229867. |
32 | HANCOCK K, BECHERER J, HAGEN M, et al. Electrolyte decomposition and electrode thickness changes in Li-S cells with lithium metal anodes, prelithiated silicon anodes and hard carbon anodes[J]. Journal of the Electrochemical Society, 2017, 165(1): doi: 10.1149/2.0161801jes. |
33 | YIN S C, RHO Y H, SWAINSON I, et al. X-ray/neutron diffraction and electrochemical studies of lithium de/re-intercalation in Li1- xCo1/3Ni1/3Mn1/3O2 (x=0→1)[J]. Chemistry of Materials, 2006, 18(7): 1901-1910. |
34 | QI Y, HARRIS S J. In situ observation of strains during lithiation of a graphite electrode[J]. Journal of the Electrochemical Society, 2010, 157(6): doi: 10.1149/1.3377130. |
35 | SOMMER L W, KIESEL P, GANGULI A, et al. Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors[J]. Journal of Power Sources, 2015, 296: 46-52. |
36 | BITZER B, GRUHLE A. A new method for detecting lithium plating by measuring the cell thickness[J]. Journal of Power Sources, 2014, 262: 297-302. |
37 | GRIMSMANN F, GERBERT T, BRAUCHLE F, et al. Determining the maximum charging currents of lithium-ion cells for small charge quantities[J]. Journal of Power Sources, 2017, 365: 12-16. |
38 | BAUER M, RIEGER B, SCHINDLER S, et al. Multi-phase formation induced by kinetic limitations in graphite-based lithium-ion cells: Analyzing the effects on dilation and voltage response[J]. Journal of Energy Storage, 2017, 10: 1-10. |
39 | BIRKENMAIER C, BITZER B, HARZHEIM M, et al. Lithium plating on graphite negative electrodes: Innovative qualitative and quantitative investigation methods[J]. Journal of the Electrochemical Society, 2015, 162(14): doi: 10.1149/2.0451514jes. |
40 | RIEGER B, SCHUSTER S F, ERHARD S V, et al. Multi-directional laser scanning as innovative method to detect local cell damage during fast charging of lithium-ion cells[J]. Journal of Energy Storage, 2016, 8: 1-5. |
41 | ROBINSON J B, OWEN R E, KOK M D R, et al. Identifying defects in Li-ion cells using ultrasound acoustic measurements[J]. Journal of the Electrochemical Society, 2020, 167(12): doi: 10.1149/1945-7111/abb174. |
42 | BOMMIER C, CHANG W, LU Y F, et al. In operando acoustic detection of lithium metal plating in commercial LiCoO2/graphite pouch cells[J]. Cell Reports Physical Science, 2020, 1(4): doi: 10.1016/j.xcrp.2020.100035. |
43 | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. |
[1] | Yue PAN, Xuebing HAN, Minggao OUYANG, Huahua REN, Wei LIU, Yuejun YAN. Research on the detection algorithm for internal short circuits in lithium-ion batteries and its application to real operating data [J]. Energy Storage Science and Technology, 2023, 12(1): 198-208. |
[2] | Xiaolong HE, Xiaolong SHI, Ziyang WANG, Luhao HAN, Bin YAO. Experimental study on thermal runaway characteristics of vehicle NCM lithium-ion batteries under overcharge, overheating, and their combined effects [J]. Energy Storage Science and Technology, 2023, 12(1): 218-226. |
[3] | Linwang DENG, Tianyu FENG, Shiwei SHU, Zifeng ZHANG, Bin GUO. Review of a fast-charging strategy and technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2879-2890. |
[4] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[5] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[6] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
[7] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[8] | Tao SUN, Tengteng SHEN, Xin LIU, Dongsheng REN, Jinhai LIU, Yuejiu ZHENG, Luyan WANG, Languang LU, Minggao OUYANG. Application of titration gas chromatography technology in the quantitative detection of lithium plating in Li-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2564-2573. |
[9] | Yong XIAO, Jun XU. Risk assessment of battery safe operation in energy storage power station based on combination weighting and TOPSIS [J]. Energy Storage Science and Technology, 2022, 11(8): 2574-2584. |
[10] | Yong MA, Xiaohan LI, Lei SUN, Dongliang GUO, Jinggang YANG, Jianjun LIU, Peng XIAO, Guangjun QIAN. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model [J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611. |
[11] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
[12] | Liping HUO, Weiling LUAN, Zixian ZHUANG. Development trend of lithium-ion battery safety technology for energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680. |
[13] | Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming LIU, Min YAN, Shun TANG, Yuancheng CAO, Shijie CHENG, Weixin ZHANG. Patent analysis of fire-protection technology of lithium-ion energy storage system [J]. Energy Storage Science and Technology, 2022, 11(8): 2664-2670. |
[14] | Yue ZHANG, Depeng KONG, Ping PING. Performance and design optimization of a cold plate for inhibiting thermal runaway propagation of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(8): 2432-2441. |
[15] | Chengshan XU, Borui LU, Mengqi ZHANG, Huaibin WANG, Changyong JIN, Minggao OUYANG, Xuning FENG. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin [J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||