Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (4): 1215-1222.doi: 10.19799/j.cnki.2095-4239.2022.0652
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Pengkai WANG(), Xinyan ZHANG(), Guanghao ZHANG
Received:
2022-11-04
Revised:
2022-11-20
Online:
2023-04-05
Published:
2023-05-08
Contact:
Xinyan ZHANG
E-mail:1360174241@qq.com;13203987062@163.com
CLC Number:
Pengkai WANG, Xinyan ZHANG, Guanghao ZHANG. Remaining useful life prediction of lithium-ion batteries based on ResNet-Bi-LSTM-Attention model[J]. Energy Storage Science and Technology, 2023, 12(4): 1215-1222.
Table 3
Comparison of evaluation indicators for 50% training"
电池 | 评价指标 | CNN-Bi-LSTM | RESNET-Bi-LSTM | Bi-LSTM-Attention | RESNET-Bi-LSTM-Attention |
---|---|---|---|---|---|
CS2_35 | MAE | 0.017 697 76 | 0.036 269 485 | 0.019 153 179 | 0.016 780 087 |
RMSE | 0.025 043 553 | 0.045 468 638 | 0.024 663 573 | 0.024 443 291 | |
CS2_36 | MAE | 0.034 204 462 | 0.026 138 713 | 0.019 026 492 | 0.017 120 992 |
RMSE | 0.041 248 78 | 0.034 371 126 | 0.024 257 293 | 0.024 411 781 | |
CS2_37 | MAE | 0.018 991 438 | 0.014 542 032 | 0.031 645 693 | 0.013 785 957 |
RMSE | 0.022 644 327 | 0.020 071 071 | 0.043 750 413 | 0.020 911 526 | |
CS2_38 | MAE | 0.015 664 939 | 0.016 727 846 | 0.028 442 435 | 0.011 880 822 |
RMSE | 0.020 777 135 | 0.025 571 059 | 0.041 147 682 | 0.018 031 097 |
Table 4
Comparison of evaluation indicators for 60% training"
电池 | 评价指标 | CNN-Bi-LSTM | RESNET-Bi-LSTM | Bi-LSTM-Attention | RESNET-Bi-LSTM-Attention |
---|---|---|---|---|---|
CS2_35 | MAE | 0.017 061 121 | 0.015 047 912 | 0.015 392 527 | 0.011 880 822 |
RMSE | 0.023 313 838 | 0.022 000 08 | 0.019 768 48 | 0.018 031 097 | |
CS2_36 | MAE | 0.032 041 899 | 0.020 812 132 | 0.015 037 692 | 0.013 449 2 |
RMSE | 0.044 247 904 | 0.023 471 57 | 0.020 134 884 | 0.019 324 627 | |
CS2_37 | MAE | 0.016 239 846 | 0.012 047 632 | 0.022 348 693 | 0.012 346 628 |
RMSE | 0.023 458 687 | 0.016 432 147 | 0.031 275 775 | 0.015 378 46 | |
CS2_38 | MAE | 0.015 629 569 | 0.013 534 646 | 0.028 442 435 | 0.010 612 722 |
RMSE | 0.018 485 614 | 0.020 826 706 | 0.031 246 735 | 0.015 324 861 |
1 | 胡振恺, 雷博, 李勇琦, 等. 储能用锂离子电池安全性测试与评估方法比较[J]. 储能科学与技术, 2022, 11(5): 1650-1656. |
HU Z K, LEI B, LI Y Q, et al. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage[J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. | |
2 | 闫啸宇, 周思达, 卢宇, 等. 锂离子电池容量衰退机理与影响因素研究[J/OL]. 北京航空航天大学学报:1-13.[2022-04-20]. https://doi.org/10.13700/j.bh.1001-5965.2021.0458. |
YAN X Y, ZHOU S D, LU Y, et al. Study on the capacity decline mechanism and influencing factors of lithium-ion batteries[J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-13.[2022-04-20]. https://doi.org/10.13700/j.bh.1001-5965.2021.0458. | |
3 | 蔡艳平, 陈万, 苏延召, 等. 锂离子电池剩余寿命预测方法综述[J]. 电源技术, 2021, 45(5): 678-682. |
CAI Y P, CHEN W, SU Y Z, et al. Review of remaining useful life prediction for lithium ion batteries[J]. Chinese Journal of Power Sources, 2021, 45(5): 678-682. | |
4 | 索梦磊, 李俊夫, 赵明, 等. 锂离子电池寿命预测研究进展[J]. 电池工业, 2020, 24(5): 255-263. |
SUO M L, LI J F, ZHAO M, et al. Research progress of lithium ion battery life prediction[J]. Chinese Battery Industry, 2020, 24(5): 255-263. | |
5 | 张若可, 郭永芳, 余湘媛, 等. 基于数据驱动的锂离子电池RUL预测综述[J/OL]. 电源学报:1-15.[2022-04-20]. http://kns.cnki.net/kcms/detail/12.1420.tm.20210824.1932.014.html. |
ZHANG R K, GUO Y F, YU X Y, et al. A review of RUL prediction of lithium-ion batteries based on data-driven[J/OL]. Journal of Power Sources: 1-15. [2022-04-20]. http://kns.cnki.net/kcms/detail/12.1420.tm.20210824.1932.014.html. | |
6 | VIANI L, ROSI P, ROTUNNO E, et al. Enhancing electron computational ghost imaging using artificial neural networks[J]. Microscopy and Microanalysis, 2022, 28(S1): 2242-2244. |
7 | ZHANG Y Y. MOOC teaching model of basic education based on fuzzy decision tree algorithm[J]. Computational Intelligence and Neuroscience, 2022: doi:10.1155/2022/3175028. |
8 | GANAIE M A, TANVEER M, SUGANTHAN P N, et al. Oblique and rotation double random forest[J]. Neural Networks, 2022, 153: 496-517. |
9 | TEPE C, DEMIR M C. Real-time classification of EMG myo armband data using support vector machine[J]. IRBM, 2022, 43(4): 300-308. |
10 | KARTHIK C R, RAGHUNANDAN, ASHWATH RAO B, et al. Forecasting variance of NiftyIT index with RNN and DNN[J]. Journal of Physics: Conference Series, 2022, 2161(1): 012005. |
11 | USHARANI B. ILF-LSTM: Enhanced loss function in LSTM to predict the sea surface temperature[J]. Soft Computing, 2022: 1-13. |
12 | 吕明珠. 基于改进LSTM的滚动轴承性能退化趋势预测[J]. 轴承, 2022(4): 70-76. |
LÜ M Z. Performance degradation trend prediction of rolling bearings based on improved LSTM[J]. Bearing, 2022(4): 70-76. | |
13 | BOU-RABEE M A, NAZ M Y, ALBALAA I E, et al. BiLSTM network-based approach for solar irradiance forecasting in continental climate zones[J]. Energies, 2022, 15(6): 2226. |
14 | SU Y, KONG X W, LIU G B. Advertising popularity feature collaborative recommendation algorithm based on attention-LSTM model[J]. Security and Communication Networks, 2021: 1-11. |
15 | 朱张莉, 饶元, 吴渊, 等. 注意力机制在深度学习中的研究进展[J]. 中文信息学报, 2019, 33(6): 1-11. |
ZHU Z L, RAO Y, WU Y, et al. Research progress of attention mechanism in deep learning[J]. Journal of Chinese Information Processing, 2019, 33(6): 1-11. | |
16 | GE F, ZHANG Y, XU J, et al. Prediction of disease-associated nsSNPs by integrating multi-scale ResNet models with deep feature fusion[J]. Briefings in Bioinformatics, 2022, 23(1): doi:10.1093/bib/bbab530. |
17 | 王英楷, 张红, 王星辉. 基于1DCNN-LSTM的锂离子电池SOH预测[J]. 储能科学与技术, 2022, 11(1): 240-245. |
WANG Y K, ZHANG H, WANG X H. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health[J]. Energy Storage Science and Technology, 2022, 11(1): 240-245. | |
18 | ZHU M L, WANG Q Q, LUO J L. Emotion recognition based on dynamic energy features using a Bi-LSTM network[J]. Frontiers in Computational Neuroscience, 2022, 15: doi:10.3389/fncom.2021.741086. |
19 | 史永胜, 施梦琢, 丁恩松, 等. 基于CEEMDAN-LSTM组合的锂离子电池寿命预测方法[J]. 工程科学学报, 2021, 43(7): 985-994. |
SHI Y S, SHI M Z, DING E S, et al. Combined prediction method of lithium-ion battery life based on CEEMDAN-LSTM[J]. Chinese Journal of Engineering, 2021, 43(7): 985-994. | |
20 | 刘芊彤, 邢远秀. 基于VMD-PSO-GRU模型的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2023, 12(1): 236-246. |
LIU Q T, XING Y X. Remaining life prediction of lithium-ion battery based on VMD-PSO-GRU model[J]. Energy Storage Science and Technology, 2023, 12(1): 236-246. |
[1] | Jinhua SONG, Xinghao ZHANG, Zhenhe FENG, Guangyu CHENG, Honghui GU, Haitao GU, Ke WANG. Degradation mechanisms of SiO x -C composite anode based on in situ reference electrode [J]. Energy Storage Science and Technology, 2023, 12(4): 1059-1065. |
[2] | Liyue HU, Xingyan YAO. Thermal runaway of lithium-ion batteries based on orthogonal test [J]. Energy Storage Science and Technology, 2023, 12(4): 1268-1277. |
[3] | Zhi ZHAI, Fujin WANG, Yi DI, Peiyu MA, Zhibin ZHAO, Xuefeng CHEN. Hierarchical alignment transfer learning for lithium-ion battery capacity estimation [J]. Energy Storage Science and Technology, 2023, 12(4): 1223-1233. |
[4] | Ni YANG, Yuefeng SU, Lian WANG, Ning LI, Liang MA, Chen ZHU. Research progress of focused ion beam microscopy in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1283-1294. |
[5] | Xueli CHENG, Weifu ZHANG, Chengcheng LUO, Xiaoya YUAN. Preparation of three-dimensional graphene/Fe3O4 composites by one-step hydrothermal method and their lithium storage performance [J]. Energy Storage Science and Technology, 2023, 12(4): 1066-1074. |
[6] | Yiming YAO, Weiling LUAN, Ying CHEN, Min SUN. Recent progress in aging degradation of lithium-ion battery materials via in-situ optical microscopy [J]. Energy Storage Science and Technology, 2023, 12(3): 777-791. |
[7] | Kuijie LI, Ping LOU, Minyuan GUAN, Jinlong MO, Weixin ZHANG, Yuancheng CAO, Shijie CHENG. A review of multi-dimensional signal evolution and coupling mechanism of lithium-ion battery thermal runaway [J]. Energy Storage Science and Technology, 2023, 12(3): 899-912. |
[8] | Zhifu WANG, Wei LUO, Yuan YAN, Song XU, Wenmei HAO, Conglin ZHOU. Fault diagnosis of lithium-ion battery sensors using GAPSO-FNN [J]. Energy Storage Science and Technology, 2023, 12(2): 602-608. |
[9] | Deliu ZHANG, Yan ZHANG, Hai WANG, Jiadong WANG, Xuanwen GAO, Chaomeng LIU, Dongrun YANG, Wenbin LUO. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating [J]. Energy Storage Science and Technology, 2023, 12(2): 339-348. |
[10] | Fan YANG, Jiarui HE, Ming LU, Lingxia LU, Miao YU. SOC estimation of lithium-ion batteries based on BP-UKF algorithm [J]. Energy Storage Science and Technology, 2023, 12(2): 552-559. |
[11] | Wenkai ZHU, Xing ZHOU, Yajie LIU, Tao ZHANG, Yuanming SONG. Real time state of charge estimation method of lithium-ion battery based on recursive gated recurrent unit neural network [J]. Energy Storage Science and Technology, 2023, 12(2): 570-578. |
[12] | Yue PAN, Xuebing HAN, Minggao OUYANG, Huahua REN, Wei LIU, Yuejun YAN. Research on the detection algorithm for internal short circuits in lithium-ion batteries and its application to real operating data [J]. Energy Storage Science and Technology, 2023, 12(1): 198-208. |
[13] | Xiaolong HE, Xiaolong SHI, Ziyang WANG, Luhao HAN, Bin YAO. Experimental study on thermal runaway characteristics of vehicle NCM lithium-ion batteries under overcharge, overheating, and their combined effects [J]. Energy Storage Science and Technology, 2023, 12(1): 218-226. |
[14] | Linwang DENG, Tianyu FENG, Shiwei SHU, Bin GUO, Zifeng ZHANG. Nondestructive lithium plating online detection for lithium-ion batteries: A review [J]. Energy Storage Science and Technology, 2023, 12(1): 263-277. |
[15] | Linwang DENG, Tianyu FENG, Shiwei SHU, Zifeng ZHANG, Bin GUO. Review of a fast-charging strategy and technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2879-2890. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||