Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (7): 2166-2184.doi: 10.19799/j.cnki.2095-4239.2023.0287
Previous Articles Next Articles
Qixin GAO(), Jingteng ZHAO, Guoxing LI()
Received:
2023-04-27
Revised:
2023-05-17
Online:
2023-07-05
Published:
2023-07-25
Contact:
Guoxing LI
E-mail:202217019@mail.sdu.edu.cn;gxli@sdu.edu.cn
CLC Number:
Qixin GAO, Jingteng ZHAO, Guoxing LI. Research progress on fast-charging lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2166-2184.
Fig. 6
(a) Illustration of N- and B-doped graphene[35]; (b) Si NPs attached to graphene sheets by polydopamine-linked strong covalent and hydrogen bonds[36]; (c) Conventional particle electrodes with large interparticle resistance and high pore tortuosity and single-layer electrodes with low pore tortuosity and no intergranular resistance in the ion transport direction[37]"
Fig. 7
(a) The self-expanded ion-transport channels enabled by the reversible transition of chemical bonds with different bond lengths and the representation of self-expanding Li-ion transport channels in GDY anodes during cycling;[39] (b) Illustration of Cu0.95V2O5 self-catalyzing the growth of GDY and generation of Cu and O vacancies[40]; (c) Schematic diagram of the IPI[41]"
Fig. 8
(a) TEM images with corresponding selected area electron diffraction (SAED) patterns and high magnification TEM images with filtered Fourier transforms of regions enclosed in yellow squares of P-NCA85 and 1-Nb NCA85 cathodes after 1000 cycles[73]; (b) Cross-sectional SEM images of NCA95 and NCMo95 cathode particles lithiated at 700, 750, and 800 °C for 10 h[74]; (c) Rate performance of LiCo0.98MO2 (M=Co0.02, Mg0.02, Ti0.02 and Mg0.01Ti0.01) and cycling performance of LiCoO2 and LiCo0.98Mg0.01Ti0.01O2 at 5 C[75];(d) Schematic diagram of LiNiO2 and LiNiO2 crystal structure doped with Mn[76]"
Fig. 10
(a) Possible mechanisms for dehydrofluorination of FEC by Lewis acid (PF5) or HF[87]; (b) The possible mechanism for HF removal and PF5 stabilization by the TMSNCS additive[88]; (c) Schematic illustration of vicious circle in blank electrolyte and effective protection in DMPATMB-contained electrolyte for lithium metal battery. Dashed lines represent weakened reactions[89]"
1 | 来鑫, 陈权威, 顾黄辉, 等. 面向"双碳"战略目标的锂离子电池生命周期评价:框架、方法与进展[J]. 机械工程学报, 2022, 58(22): 3-18. |
LAI X, CHEN Q W, GU H H, et al. Life cycle assessment of lithium-ion batteries facing the strategic goal of "double carbon": Framework, method and progress[J]. Journal of Mechanical Engineering, 2022, 58(22): 3-18. | |
2 | 胡敏, 王恒, 陈琪. 电动汽车锂离子动力电池发展现状及趋势[J]. 汽车实用技术, 2020(9): 8-10. |
HU M, WANG H, CHEN Q. Development status and trend of lithium-ion power batteries for electric vehicles[J]. Automobile Applied Technology, 2020(9): 8-10. | |
3 | AGENCY I E. Global EV Outlook 2021: Accelerating ambitions despite the pandemic[M]. OECD, 2021. |
4 | ZHANG B, NIU N, LI H, et al. Could fast battery charging effectively mitigate range anxiety in electric vehicle usage? Evidence from large-scale data on travel and charging in Beijing[J]. Transportation Research Part D: Transport and Environment, 2021, 95: doi: 10.1016/j.trd.2021.102840. |
5 | WANG C Y, LIU T, YANG X G, et al. Fast charging of energy-dense lithium-ion batteries[J]. Nature, 2022, 611(7936): 485-490. |
6 | WEISS M, RUESS R, KASNATSCHEEW J, et al. Fast charging of lithium-ion batteries: A review of materials aspects[J]. Advanced Energy Materials, 2021, 11(33): doi: 10.1002/aenm.202101126. |
7 | CAI W L, YAO Y X, ZHU G L, et al. A review on energy chemistry of fast-charging anodes[J]. Chemical Society Reviews, 2020, 49(12): 3806-3833. |
8 | LI S Q, WANG K, ZHANG G F, et al. Fast charging anode materials for lithium-ion batteries: Current status and perspectives[J]. Advanced Functional Materials, 2022, 32(23): doi: 10.1002/adfm. 202200796. |
9 | ZHU G L, ZHAO C Z, HUANG J Q, et al. Fast charging lithium batteries: Recent progress and future prospects[J]. Small, 2019, 15(15): doi: 10.1002/smll.201805389. |
10 | LI G X. Regulating mass transport behavior for high-performance lithium metal batteries and fast-charging lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(7): doi: 10.1002/aenm. 202002891. |
11 | ZHAO J T, SONG C Y, LI G X. Fast-charging strategies for lithium-ion batteries: Advances and perspectives[J]. ChemPlusChem, 2022, 87(7): doi:10.1002/cplu.202200155. |
12 | RANGOM Y, DUIGNAN T T, ZHAO X S. Lithium-ion transport behavior in thin-film graphite electrodes with SEI layers formed at different current densities[J]. ACS Applied Materials & Interfaces, 2021, 13(36): 42662-42669. |
13 | ZHANG Z, ZHAO D C, XU Y Y, et al. A review on electrode materials of fast-charging lithium-ion batteries[J]. The Chemical Record, 2022, 22(10): doi: 10.1002/tcr.202200127. |
14 | WALDMANN T, HOGG B I, WOHLFAHRT-MEHRENS M. Li plating as unwanted side reaction in commercial Li-ion cells-A review[J]. Journal of Power Sources, 2018, 384: 107-124. |
15 | CHANDRASEKARAN R. Quantification of bottlenecks to fast charging of lithium-ion-insertion cells for electric vehicles[J]. Journal of Power Sources, 2014, 271: 622-632. |
16 | ZHANG G X, WEI X Z, HAN G S, et al. Lithium plating on the anode for lithium-ion batteries during long-term low temperature cycling[J]. Journal of Power Sources, 2021, 484: doi: 10.1016/j.jpowsour.2020.229312. |
17 | LEGRAND N, KNOSP B, DESPREZ P, et al. Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling[J]. Journal of Power Sources, 2014, 245: 208-216. |
18 | HEIN S, DANNER T, LATZ A. An electrochemical model of lithium plating and stripping in lithium ion batteries[J]. ACS Applied Energy Materials, 2020, 3(9): 8519-8531. |
19 | TOMASZEWSKA A, CHU Z Y, FENG X N, et al. Lithium-ion battery fast charging: A review[J]. eTransportation, 2019, 1: doi: 10.1016/j.etran.2019.100011. |
20 | XIE W L, LIU X H, HE R, et al. Challenges and opportunities toward fast-charging of lithium-ion batteries[J]. Journal of Energy Storage, 2020, 32: doi: 10.1016/j.est.2020.101837. |
21 | BANDHAUER T M, GARIMELLA S, FULLER T F. A critical review of thermal issues in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(3): R1. |
22 | NAZARI A, FARHAD S. Heat generation in lithium-ion batteries with different nominal capacities and chemistries[J]. Applied Thermal Engineering, 2017, 125: 1501-1517. |
23 | SMITH K, SHI Y, WOOD E, et al. Optimizing battery usage and management for long life[R/OL]. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2016[2022-07-01]. https://www.semanticscholar.org/paper/Optimizing-Battery-Usage-and-Management-for-Long-Smith-Shi/9d39783e91caadc69d4096e63ff857a52c418d8d. |
24 | LI Y L, FENG X N, REN D S, et al. Thermal runaway triggered by plated lithium on the anode after fast charging[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46839-46850. |
25 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
26 | LI L, ZHANG D, DENG J P, et al. Carbon-based materials for fast charging lithium-ion batteries[J]. Carbon, 2021, 183: 721-734. |
27 | 王灿, 马盼, 祝国梁, 等. 锂离子电池长寿命石墨电极研究现状与展望[J]. 储能科学与技术, 2021, 10(1): 59-67. |
WANG C, MA P, ZHU G L, et al. Research status and prospect of long-life graphite electrode for lithium ion battery[J]. Energy Storage Science and Technology, 2021, 10(1): 59-67. | |
28 | YAZAMI R, TOUZAIN P. A reversible graphite-lithium negative electrode for electrochemical generators[J]. Journal of Power Sources, 1983, 9(3): 365-371. |
29 | XUE Y H, ZHANG Q, WANG W J, et al. Opening two-dimensional materials for energy conversion and storage: A concept[J]. Advanced Energy Materials, 2017, 7(19): doi: 10.1002/aenm.201602684. |
30 | KIM T H, JEON E K, KO Y, et al. Enlarging the d-spacing of graphite and polarizing its surface charge for driving lithium ions fast[J]. Journal of Materials Chemistry A, 2014, 2(20): 7600-7605. |
31 | CHEN K H, NAMKOONG M J, GOEL V, et al. Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures[J]. Journal of Power Sources, 2020, 471: doi: 10.1016/j.jpowsour.2020.228475. |
32 | YAO F, GÜNEŞ F, TA H Q, et al. Diffusion mechanism of lithium ion through basal plane of layered graphene[J]. Journal of the American Chemical Society, 2012, 134(20): 8646-8654. |
33 | CHENG Q, YUGE R, NAKAHARA K, et al. KOH etched graphite for fast chargeable lithium-ion batteries[J]. Journal of Power Sources, 2015, 284: 258-263. |
34 | XU C H, XU B H, GU Y, et al. Graphene-based electrodes for electrochemical energy storage[J]. Energy & Environmental Science, 2013, 6(5): 1388-1414. |
35 | WU Z S, REN W C, XU L, et al. Doped graphene sheets As anode materials with superhigh rate and large capacity for lithium ion batteries[J]. ACS Nano, 2011, 5(7): 5463-5471. |
36 | AGYEMAN D A, SONG K, LEE G H, et al. Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery[J]. Advanced Energy Materials, 2016, 6(20): doi: 10.1002/aenm.201600904. |
37 | TU S B, LU Z H, ZHENG M T, et al. Single-layer-particle electrode design for practical fast-charging lithium-ion batteries[J]. Advanced Materials, 2022, 34(39): doi: 10.1002/adma.202202892. |
38 | LI G X, LI Y L, LIU H B, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications, 2010, 46(19): 3256-3258. |
39 | AN J A, ZHANG H Y, QI L, et al. Back cover: Self-expanding ion-transport channels on anodes for fast-charging lithium-ion batteries (angew. chem. int. Ed. 7/2022)[J]. Angewandte Chemie International Edition, 2022, 61(7): doi: 10.1002/anie.202200506. |
40 | WANG F, AN J, SHEN H, et al. Gradient graphdiyne induced copper and oxygen vacancies in Cu0.95V2O5 anodes for fast-charging lithium-ion batteries[J]. Angewandte Chemie (International Ed in English), 2023, 62(7): doi: 10.1002/anie.202216397. |
41 | AN J A, WANG F, YANG J Y, et al. An ion-pumping interphase on graphdiyne/graphite heterojunction for fast-charging lithium-ion batteries[J]. CCS Chemistry, 2023: 1-15. |
42 | WANG G, YU M H, FENG X L. Carbon materials for ion-intercalation involved rechargeable battery technologies[J]. Chemical Society Reviews, 2021, 50(4): 2388-2443. |
43 | HOU H S, QIU X Q, WEI W F, et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced Energy Materials, 2017, 7(24): doi: 10.1002/aenm.201602898. |
44 | CHEN K H, GOEL V, NAMKOONG M J, et al. Enabling 6C fast charging of Li-ion batteries with graphite/hard carbon hybrid anodes[J]. Advanced Energy Materials, 2021, 11(5): doi: 10.1002/aenm.202003336. |
45 | WANG D, ZHOU J S, LI Z P, et al. Uniformly expanded interlayer distance to enhance the rate performance of soft carbon for lithium-ion batteries[J]. Ionics, 2019, 25(4): 1531-1539. |
46 | YUAN T, TAN Z P, MA C R, et al. Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications[J]. Advanced Energy Materials, 2017, 7(12): doi: 10.1002/aenm.201601625. |
47 | WANG D D, SHAN Z Q, TIAN J H, et al. Understanding the formation of ultrathin mesoporous Li4Ti5O12 nanosheets and their application in high-rate, long-life lithium-ion anodes[J]. Nanoscale, 2019, 11(2): 520-531. |
48 | KAVAN L, GRÄTZEL M. Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion[J]. Electrochemical and Solid-State Letters, 2002, 5(2): A39. |
49 | TANG L K, HE Y B, WANG C, et al. High-density microporous Li4 Ti5 O12 microbars with superior rate performance for lithium-ion batteries[J]. Advanced Science, 2017, 4(5): doi: 10.1002/advs. 201600311. |
50 | SONG Z H, LI H, LIU W, et al. Ultrafast and stable Li-(de)intercalation in a large single crystal H-Nb2O5 anode via optimizing the homogeneity of electron and ion transport[J]. Advanced Materials, 2020, 32(22): doi: 10.1002/adma.202001001. |
51 | HAO X G, BARTLETT B M. Li4Ti5O12Nanocrystals synthesized by carbon templating from solution precursors yield high performance thin film Li-ion battery electrodes[J]. Advanced Energy Materials, 2013, 3(6): 753-761. |
52 | FECKL J M, FOMINYKH K, DÖBLINGER M, et al. Nanoscale porous framework of lithium titanate for ultrafast lithium insertion[J]. Angewandte Chemie, 2012, 124(30): 7577-7581. |
53 | ZHANG X Y, VERHALLEN T W, LABOHM F, et al. Direct observation of Li-ion transport in electrodes under nonequilibrium conditions using neutron depth profiling[J]. Advanced Energy Materials, 2015, 5(15): doi:10.1002/aenm.201500498. |
54 | PAGANI F, STILP E, PFENNINGER R, et al. Epitaxial thin films as a model system for Li-ion conductivity in Li4Ti5O12[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44494-44500. |
55 | JIN X, HAN Y H, ZHANG Z F, et al. Mesoporous single-crystal lithium titanate enabling fast-charging Li-ion batteries[J]. Advanced Materials, 2022, 34(18): doi: 10.1002/adma.202270131. |
56 | LUO Z, XIAO Q, LEI G, et al. Si nanoparticles/graphene composite membrane for high performance silicon anode in lithium ion batteries[J]. Carbon, 2016, 98: 373-380. |
57 | PHILIPPE B, DEDRYVÈRE R, ALLOUCHE J, et al. Nanosilicon electrodes for lithium-ion batteries: Interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy[J]. Chemistry of Materials, 2012, 24(6): 1107-1115. |
58 | HUANG G, HAN J H, LU Z, et al. Ultrastable silicon anode by three-dimensional nanoarchitecture design[J]. ACS Nano, 2020, 14(4): 4374-4382. |
59 | LIU X H, ZHONG L, HUANG S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2): 1522-1531. |
60 | ZUO X X, YANG Q H, HE Y L, et al. High-temperature magnesiothermic reduction enables HF-free synthesis of porous silicon with enhanced performance as lithium-ion battery anode[J]. Molecules, 2022, 27(21): 7486. |
61 | LIN L, MA Y T, XIE Q S, et al. Copper-nanoparticle-induced porous Si/Cu composite films as an anode for lithium ion batteries[J]. ACS Nano, 2017, 11(7): 6893-6903. |
62 | JO Y N, KIM Y, KIM J S, et al. Si-graphite composites as anode materials for lithium secondary batteries[J]. Journal of Power Sources, 2010, 195(18): 6031-6036. |
63 | YOON Y S, JEE S H, LEE S H, et al. Nano Si-coated graphite composite anode synthesized by semi-mass production ball milling for lithium secondary batteries[J]. Surface and Coatings Technology, 2011, 206(2/3): 553-558. |
64 | KO M, CHAE S, MA J, et al. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries[J]. Nature Energy, 2016, 1: 16113. |
65 | DOS SANTOS-GÓMEZ L, CUESTA N, CAMEÁN I, et al. A promising silicon/carbon xerogel composite for high-rate and high-capacity lithium-ion batteries[J]. Electrochimica Acta, 2022, 426: doi: 10.1016/j.electacta.2022.140790. |
66 | LEE B S, OH S H, CHOI Y J, et al. SiO-induced thermal instability and interplay between graphite and SiO in graphite/SiO composite anode[J]. Nature Communications, 2023, 14: 150. |
67 | 朱思颖, 李辉阳, 胡忠利, 等. 锂离子电池氧化亚硅负极结构优化和界面改性研究进展[J]. 物理化学学报, 2022, 38(6): 39-66. |
ZHU S Y, LI H Y, HU Z L, et al. Research progresses on structural optimization and interfacial modification of silicon monoxide anode for lithium-ion battery[J]. Acta Physico-Chimica Sinica, 2022, 38(6): 39-66. | |
68 | GAO X A, LI S L, XUE J C, et al. A mechanistic and quantitative understanding of the interactions between SiO and graphite particles[J]. Advanced Energy Materials, 2023, 13(2): doi: 10. 1002/aenm.202202584. |
69 | 蓝兹炜, 张建茹, 李园园, 等. 基于锂离子电池正极材料的一元/二元复合正极材料研究进展[J]. 储能科学与技术, 2021, 10(1): 27-39. |
LAN (C /Z)W, ZHANG J R, LI Y Y, et al. Research progress of unitary/binary composite cathode materials based on cathode materials for lithium ion batteries[J]. Energy Storage Science and Technology, 2021, 10(1): 27-39. | |
70 | XUE W J, GAO R, SHI Z, et al. Stabilizing electrode-electrolyte interfaces to realize high-voltage Li||LiCoO2 batteries by a sulfonamide-based electrolyte[J]. Energy & Environmental Science, 2021, 14(11): 6030-6040. |
71 | WANG T Z, WU X G, XU S B, et al. Performance of plug-in hybrid electric vehicle under low temperature condition and economy analysis of battery pre-heating[J]. Journal of Power Sources, 2018, 401: 245-254. |
72 | 安富强, 赵洪量, 程志, 等. 纯电动车用锂离子电池发展现状与研究进展[J]. 工程科学学报, 2019, 41(1): 22-42. |
AN F Q, ZHAO H L, CHENG Z, et al. Development status and research progress of power battery for pure electric vehicles[J]. Chinese Journal of Engineering, 2019, 41(1): 22-42. | |
73 | KIM U H, PARK J H, AISHOVA A, et al. Microstructure engineered Ni-rich layered cathode for electric vehicle batteries[J]. Advanced Energy Materials, 2021, 11(25): doi: 10.1002/aenm.202100884. |
74 | PARK G T, YOON D R, KIM U H, et al. Ultrafine-grained Ni-rich layered cathode for advanced Li-ion batteries[J]. Energy & Environmental Science, 2021, 14(12): 6616-6626. |
75 | ZHANG M L, TAN M, ZHAO H Y, et al. Enhanced high-voltage cycling stability and rate capability of magnesium and titanium co-doped lithium cobalt oxides for lithium-ion batteries[J]. Applied Surface Science, 2018, 458: 111-118. |
76 | XU T, DU F H, WU L, et al. Boosting the electrochemical performance of LiNiO2 by extra low content of Mn-doping and its mechanism[J]. Electrochimica Acta, 2022, 417: doi: 10.1016/j.electacta.2022.140345. |
77 | WANG C, YUAN X L, TAN H Y, et al. Three-dimensional carbon-coated LiFePO4 cathode with improved Li-ion battery performance[J]. Coatings, 2021, 11(9): 1137. |
78 | WANG H B, LIU L J, WANG R W, et al. Self-assembly of antisite defectless nano-LiFePO4 @C/reduced graphene oxide microspheres for high-performance lithium-ion batteries[J]. ChemSusChem, 2018, 11(13): 2255-2261. |
79 | HU J T, JI Y C, ZHENG G R, et al. Influence of electrolyte structural evolution on battery applications: Cationic aggregation from dilute to high concentration[J]. Aggregate, 2022, 3(1): doi: 10.1002/agt2.153. |
80 | YAMADA Y, USUI K, CHIANG C H, et al. General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes[J]. ACS Applied Materials & Interfaces, 2014, 6(14): 10892-10899. |
81 | MING J, CAO Z, WAHYUDI W, et al. New insights on graphite anode stability in rechargeable batteries: Li ion coordination structures prevail over solid electrolyte interphases[J]. ACS Energy Letters, 2018, 3(2): 335-340. |
82 | YAMADA Y, FURUKAWA K, SODEYAMA K, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136(13): 5039-5046. |
83 | CAO X A, JIA H, XU W, et al. Review—Localized high-concentration electrolytes for lithium batteries[J]. Journal of the Electrochemical Society, 2021, 168(1): 010522. |
84 | JIANG L L, YAN C, YAO Y X, et al. Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries[J]. Angewandte Chemie International Edition, 2021, 60(7): 3402-3406. |
85 | YUE X Y, ZHANG J, DONG Y T, et al. Reversible Li plating on graphite anodes through electrolyte engineering for fast-charging batteries[J]. Angewandte Chemie (International Ed in English), 2023, 62(19): doi: 10.1002/anie.202302285. |
86 | BIN SON H, JEONG M Y, HAN J G, et al. Effect of reductive cyclic carbonate additives and linear carbonate co-solvents on fast chargeability of LiNi0.6Co0.2Mn0.2O2/graphite cells[J]. Journal of Power Sources, 2018, 400: 147-156. |
87 | KIM K, PARK I, HA S Y, et al. Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries[J]. Electrochimica Acta, 2017, 225: 358-368. |
88 | HAN J G, JEONG M Y, KIM K, et al. An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes[J]. Journal of Power Sources, 2020, 446: doi:10.1016/j.jpowsour.2019.227366. |
89 | JIANG G X, LIU J D, HE J A, et al. Hydrofluoric acid-removable additive optimizing electrode electrolyte interphases with Li+ conductive moieties for 4.5V lithium metal batteries[J]. Advanced Functional Materials, 2023, 33(12): doi: 10.1002/adfm.202214422. |
90 | VISHNUGOPI B S, KAZYAK E, LEWIS J A, et al. Challenges and opportunities for fast charging of solid-state lithium metal batteries[J]. ACS Energy Letters, 2021, 6(10): 3734-3749. |
91 | 张建军, 董甜甜, 杨金凤, 等. 全固态聚合物锂电池的科研进展、挑战与展望[J]. 储能科学与技术, 2018, 7(5): 861-868. |
ZHANG J J, DONG T T, YANG J F, et al. Research progress, challenge and perspective of all-solid-state polymer lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(5): 861-868. | |
92 | KE X Y, WANG Y, REN G F, et al. Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries[J]. Energy Storage Materials, 2020, 26: 313-324. |
93 | MU S, BI Z J, GAO S H, et al. Combination of organic and inorganic electrolytes for composite membranes toward applicable solid lithium batteries[J]. Chemical Research in Chinese Universities, 2021, 37(2): 246-253. |
94 | FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291. |
95 | ARYA A, SHARMA A L. A glimpse on all-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: A topical review[J]. Journal of Materials Science, 2020, 55(15): 6242-6304. |
96 | ALI S, TAN C, WAQAS M, et al. Highly efficient PVDF-HFP/colloidal alumina composite separator for high-temperature lithium-ion batteries[J]. Advanced Materials Interfaces, 2018, 5(5): doi: 10.1002/admi.201701147. |
97 | XIAO W, LI X H, GUO H J, et al. Preparation of core-shell structural single ionic conductor SiO2@Li+ and its application in PVDF-HFP-based composite polymer electrolyte[J]. Electrochimica Acta, 2012, 85: 612-621. |
98 | LIU X X, REN Y F, ZHANG L, et al. Functional ionic liquid modified core-shell structured fibrous gel polymer electrolyte for safe and efficient fast charging lithium-ion batteries[J]. Frontiers in Chemistry, 2019, 7: 421. |
99 | LIN Z Y, GUO X W, WANG Z C, et al. A wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery[J]. Nano Energy, 2020, 73: doi: 10.1016/j.nanoen.2020. 104786. |
100 | YAO Z R, ZHU K J, LI X A, et al. Double-layered multifunctional composite electrolytes for high-voltage solid-state lithium-metal batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 11958-11967. |
[1] | Zhiwei CHEN, Weige ZHANG, Junwei ZHANG, Yanru ZHANG. Comprehensive health assessment and screening method of power battery pack based on visual characteristics of charge curves [J]. Energy Storage Science and Technology, 2023, 12(7): 2211-2219. |
[2] | Chong XU, Ning XU, Zhimin JIANG, Zhongkai LI, Yang HU, Hong YAN, Guoqiang MA. Mechanisms of gas evolution and suppressing strategies based on the electrolyte in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2119-2133. |
[3] | Jin LI, Qingsong WANG, Depeng KONG, Xiaodong WANG, Zhenhua YU, Yanfei LE, Xinyan HUANG, Zhenkai HU, Houfu WU, Huabin FANG, Caowei, Shaoyu ZHANG, Ping ZHUO, Ye CHEN, Ziting LI, Wenxin MEI, Yue ZHANG, Lixiang ZHAO, Liang TANG, Zonghou HUANG, Chi CHEN, Yanhu LIU, Yuxi CHU, Xiaoyuan XU, Jin ZHANG, Yikai LI, Rong FENG, Biao YANG, Bo HU, Xiaoying YANG. Research progress on the safety assessment of lithium-ion battery energy storage [J]. Energy Storage Science and Technology, 2023, 12(7): 2282-2301. |
[4] | Jiayi ZHANG, Suting WENG, Zhaoxiang WANG, Xuefeng WANG. Solid electrolyte interphase (SEI) on graphite anode correlated with thermal runaway of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2105-2118. |
[5] | Xijiang SHEN, Qiangling DUAN, Peng QIN, Qingsong WANG, Jinhua SUN. Experimental study on thermal runaway mitigation and heat transfer characteristics of ternary lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1862-1871. |
[6] | Lingfeng HUANG, Dongmei HAN, Sheng HUANG, Shuanjin WANG, Min XIAO, Yuezhong MENG. Research progress of polymer electrolytes containing organoboron for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1815-1830. |
[7] | Birong TAN, Jianhua DU, Xianghu YE, Xin CAO, Chang QU. Overview of SOC estimation methods for lithium-ion batteries based on model [J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010. |
[8] | Ya CHEN, Liyun FAN, Jingxue LI, Meisi LI, Chao XU, Yuanqi GU. Research on heat dissipation of lithium-ion batteries with secondary flow serpentine channel [J]. Energy Storage Science and Technology, 2023, 12(6): 1880-1889. |
[9] | Jidong ZHANG, Zhan YANG, Jianguo HUANG. Fabrication and electrochemical performance of micro-nanostructured C/TiO2/CuMoO4 fibrous composite based on natural cellulose [J]. Energy Storage Science and Technology, 2023, 12(5): 1616-1624. |
[10] | Kangkang QU, Yahua LIU, Die HONG, Zhaoxi SHEN, Xiaozhao HAN, Xu ZHANG. Research progress on positive electrolytes for neutral aqueous organic redox flow battery [J]. Energy Storage Science and Technology, 2023, 12(5): 1570-1588. |
[11] | Lei LEI, Peng GAO, Nana FENG, Kunpeng CAI, Hai ZHANG, Yang ZHANG. The influences of multifactors in the synthesis progress on the characteristics of lithium lanthanum zirconate solid electrolytes [J]. Energy Storage Science and Technology, 2023, 12(5): 1625-1635. |
[12] | Xuanchen WANG, Da WANG, Zhaomeng LIU, Xuanwen GAO, Wenbin LUO. Research progress and prospect of potassium ion battery electrolyte [J]. Energy Storage Science and Technology, 2023, 12(5): 1409-1426. |
[13] | Weibin HUANG, Biao ZHANG, Jincheng FAN, Wei YANG, Hanbo ZOU, Shengzhou CHEN. Preparation and modification of ZIF-8 composite PEO based solid electrolyte [J]. Energy Storage Science and Technology, 2023, 12(4): 1083-1092. |
[14] | Feng LIU, Haizhong CHEN. Lithium-ion battery state prediction based on CEEMDAN and ISOA-ELM [J]. Energy Storage Science and Technology, 2023, 12(4): 1244-1256. |
[15] | Yuanchang DONG, Xiaoqiong PANG, Jianfang JIA, Yuanhao SHI, Jie WEN, Xiao LI, Xin ZHANG. Remaining useful life prediction of lithium-ion batteries based on SVD-SAE-GPR [J]. Energy Storage Science and Technology, 2023, 12(4): 1257-1267. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||