Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (6): 1815-1830.doi: 10.19799/j.cnki.2095-4239.2023.0125
• Energy Storage Materials and Devices • Previous Articles Next Articles
Lingfeng HUANG1(), Dongmei HAN2, Sheng HUANG1, Shuanjin WANG1, Min XIAO1(), Yuezhong MENG1
Received:
2023-03-09
Revised:
2023-03-27
Online:
2023-06-05
Published:
2023-06-21
Contact:
Min XIAO
E-mail:huanglf28@mail2.sysu.edu.cn;stsxm@mail.sysu.edu.cn
CLC Number:
Lingfeng HUANG, Dongmei HAN, Sheng HUANG, Shuanjin WANG, Min XIAO, Yuezhong MENG. Research progress of polymer electrolytes containing organoboron for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(6): 1815-1830.
Fig. 2
Structure of the anionic borate network polymer[35] (a) The single-ion conducting anionic borate network polymer, ANP-5, developed as an electrolyte for an all-solid-state lithium metal battery; (b) The tetrafluorophenyl borate anion nodes (red) are physically anchored while the lithium cations are mobile throughout the material, acting as the dominant contributors to ionic conductivity. The cis-2-butene-1,4-diol linker (green) facilitates crosslinking to generate a membrane polymer resistant to swelling in the presence of plasticizer; (c) Schematic of a lithium metal battery featuring ANP-5 as the electrolyte"
Fig. 7
(a) Schematic of synthesizing poly(B-GMA) by RAFT polymerization[47]; (b) Schematic illustration of the fabrication of the multifunctional DB-SHPE[47]; (c) Schematic diagrams showing the self-healing mechanism in the DB-SHPE[47]; (d) The contribution of the boron moieties in DB-SHPE to the homogeneous deposition of Li ions in LMBs[47]"
Table 1
Summary of recently reported performance of boron-based polymer electrolytes"
序号 | 电解质类型 | 硼的杂化方式 | 离子电导率/(S/cm) | 锂离子迁移数 | 电池性能 | 参考文献 |
---|---|---|---|---|---|---|
1 | 凝胶 | sp3 | 1.5×10-4(26 ℃) | 0.95 | LFP/Li电池0.5 C循环100圈容量保持率为84% | [ |
2 | 凝胶 | sp3 | 3.53×10-4(25 ℃) | 0.92 | LFP/Li电池0.5 C循环200圈容量保持率为89.8% | [ |
3 | 凝胶 | sp3 | 2.6×10-4(25 ℃) | 0.65 | LFP/Li电池0.5 C循环500圈容量保持率为83% | [ |
4 | 凝胶 | sp3 | 2×10-4(35 ℃) | 0.93 | LFP/Li电池0.5 C循环200圈容量没有明显衰减 | [ |
5 | 凝胶 | sp3 | 1.03×10-3(32 ℃) | 0.65 | LFP/Li电池0.5 C循环300圈容量保持率为 82% | [ |
6 | 凝胶 | sp3 | 6.2×10-4(25 ℃) | 0.85 | LFP/Li电池1 C循环200圈容量保持率为76.1% | [ |
7 | 凝胶 | sp3 | 1.32×10-3(25 ℃) | 0.92 | LFP/Li电池1 C循环380圈容量保持率为91% | [ |
8 | 全固态 | sp2 | 2.2×10-4(60 ℃) | 0.63 | LFP/Li电池0.2 C循环150圈容量保持率为93% | [ |
9 | 凝胶 | sp2 | 9.11×10-4(25 ℃) | 0.68 | LFP/Li电池1 C循环600圈容量保持率为93.3% | [ |
10 | 凝胶 | sp2 | 1.32×10-3(30 ℃) | 0.6 | LFP/Li电池0.2 C循环150圈容量保持率为86% | [ |
11 | 凝胶 | sp2 | 3.44×10-4(25 ℃) | 0.58 | LFP/Li电池0.5 C循环150圈容量没有明显衰减 | [ |
12 | 凝胶 | sp2 | 8.4×10-4(30 ℃) | 0.76 | LFP/Li电池0.5 C循环400圈容量保持率为89.73% | [ |
13 | 凝胶 | sp2 | 2.52×10-3(25 ℃) | 0.79 | LFP/Li电池1 C循环500圈容量保持率为93.2% | [ |
Fig. 10
(a) Schematic diagram of ex situ SPE with low ionic conductivity, unstable SEI, poor interfacial stability and inflammable[83]; (b) Schematic diagram of PDE with high ionic conductivity, stable SEI, good interfacial stability and flame-retardant[83]; (c) Schematic diagram of the polymerization mechanism of PDE[83]; (d) Structure formulas of DOL and poly-DOL[83]"
1 | PAN J, ZHAO P, WANG N N, et al. Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes[J]. Energy & Environmental Science, 2022, 15(7): 2753-2775. |
2 | KANG J, HAN D Y, KIM S, et al. Multiscale polymeric materials for advanced lithium battery applications[J]. Advanced Materials, 2023, 35(4): doi: 10.1002/adma.202203194. |
3 | CHEN S H, QIU L, CHENG H M. Carbon-based fibers for advanced electrochemical energy storage devices[J]. Chemical Reviews, 2020, 120(5): 2811-2878. |
4 | MENG Y S, SRINIVASAN V, XU K. Designing better electrolytes[J]. Science, 2022, 378(6624): doi: 10.1126/science.abq3750. |
5 | LI J H, CAI Y F, WU H M, et al. Polymers in lithium-ion and lithium metal batteries[J]. Advanced Energy Materials, 2021, 11(15): doi: 10.1002/aenm.202003239. |
6 | JUDEZ X, ESHETU G G, LI C M, et al. Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes[J]. Joule, 2018, 2(11): 2208-2224. |
7 | WANG Q L, CUI Z L, ZHOU Q, et al. A supramolecular interaction strategy enabling high-performance all solid state electrolyte of lithium metal batteries[J]. Energy Storage Materials, 2020, 25: 756-763. |
8 | LEI W, LI H, TANG Y X, et al. Progress and perspectives on electrospinning techniques for solid-state lithium batteries[J]. Carbon Energy, 2022, 4(4): 539-575. |
9 | 陈嘉苗, 熊靖雯, 籍少敏, 等. 锂电池用全固态聚合物电解质[J]. 化学进展, 2020, 32(4): 481-496. |
CHEN J M, XIONG J W, JI S M, et al. All solid polymer electrolytes for lithium batteries[J]. Progress in Chemistry, 2020, 32(4): 481-496. | |
10 | 张鹏, 赖兴强, 沈俊荣, 等. 固态锂电池研究及产业化进展[J]. 储能科学与技术, 2021, 10(3): 896-904. |
ZHANG P, LAI X Q, SHEN J R, et al. Research and industrialization progress of solid-state lithium battery[J]. Energy Storage Science and Technology, 2021, 10(3): 896-904. | |
11 | LEE M J, HAN J, LEE K, et al. Elastomeric electrolytes for high-energy solid-state lithium batteries[J]. Nature, 2022, 601(7892): 217-222. |
12 | JIANG F, WANG Y T, JU J W, et al. Percolated sulfide in salt-concentrated polymer matrices extricating high-voltage all-solid-state lithium-metal batteries[J]. Advanced Science, 2022, 9(25): doi: 10.1002/advs.202202474. |
13 | DAI K, ZHENG Y, WEI W F. Organoboron-containing polymer electrolytes for high-performance lithium batteries[J]. Advanced Functional Materials, 2021, 31(13): doi: 10.1002/adfm.202008632. |
14 | WAN J, YAN H J, WEN R, et al. In situ visualization of electrochemical processes in solid-state lithium batteries[J]. ACS Energy Letters, 2022, 7(9): 2988-3002. |
15 | POMERANTSEVA E, BONACCORSO F, FENG X L, et al. Energy storage: The future enabled by nanomaterials[J]. Science, 2019, 366: doi: 10.1126/science.aan8285. |
16 | 周伟东, 黄秋, 谢晓新, 等. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
ZHOU W D, HUANG Q, XIE X X, et al. Research progress of polymer electrolyte for solid state lithium batteries[J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. | |
17 | YANG H, ZHANG B, JING M X, et al. In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries[J]. Advanced Energy Materials, 2022, 12(39): doi: 10.1002/aenm.202201762. |
18 | WEN S J, LUO C, WANG Q R, et al. Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries[J]. Energy Storage Materials, 2022, 47: 453-461. |
19 | MENG N, LIAN F, CUI G L. Macromolecular design of lithium conductive polymer as electrolyte for solid-state lithium batteries[J]. Small, 2021, 17(3): doi: 10.1002/smll.202005762. |
20 | SU Y, RONG X H, GAO A, et al. Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-31792-5. |
21 | FAN L Z, HE H C, NAN C W. Tailoring inorganic–polymer composites for the mass production of solid-state batteries[J]. Nature Reviews Materials, 2021, 6(11): 1003-1019. |
22 | SHAJI I, DIDDENS D, EHTESHAMI N, et al. Multisalt chemistry in ion transport and interface of lithium metal polymer batteries[J]. Energy Storage Materials, 2022, 44: 263-277. |
23 | WEN K H, XIN C Z, GUAN S D, et al. Ion–dipole interaction regulation enables high-performance single-ion polymer conductors for solid-state batteries[J]. Advanced Materials, 2022, 34(32): doi: 10.1002/adma.202202143. |
24 | LONG L Z, WANG S J, XIAO M, et al. Polymer electrolytes for lithium polymer batteries[J]. Journal of Materials Chemistry A, 2016, 4(26): 10038-10069. |
25 | FAN X Y, ZHONG C, LIU J, et al. Opportunities of flexible and portable electrochemical devices for energy storage: Expanding the spotlight onto semi-solid/solid electrolytes[J]. Chemical Reviews, 2022, 122(23): 17155-17239. |
26 | DENG K R, ZENG Q G, WANG D, et al. Single-ion conducting gel polymer electrolytes: Design, preparation and application[J]. Journal of Materials Chemistry A, 2020, 8(4): 1557-1577. |
27 | LIANG H P, ZARRABEITIA M, CHEN Z, et al. Polysiloxane-based single-ion conducting polymer blend electrolyte comprising small-molecule organic carbonates for high-energy and high-power lithium-metal batteries[J]. Advanced Energy Materials, 2022, 12(16): doi: 10.1002/aenm.202200013. |
28 | ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229-252. |
29 | GUZMÁN-GONZÁLEZ G, VAUTHIER S, ALVAREZ-TIRADO M, et al. Single-ion lithium conducting polymers with high ionic conductivity based on borate pendant groups[J]. Angewandte Chemie International Edition, 2022, 61(7): doi: 10.1002/anie.202114024. |
30 | ZHU J D, ZHANG Z, ZHAO S, et al. Single-ion conducting polymer electrolytes for solid-state lithium–metal batteries: Design, performance, and challenges[J]. Advanced Energy Materials, 2021, 11(14): doi: 10.1002/aenm.202003836. |
31 | MA Q, ZHANG H, ZHOU C W, et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion[J]. Angewandte Chemie International Edition, 2016, 55(7): 2521-2525. |
32 | CHAZALVIEL J N. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Physical Review A, 1990, 42(12): 7355-7367. |
33 | PRAKASH REDDY V, BLANCO M, BUGGA R. Boron-based anion receptors in lithium-ion and metal-air batteries[J]. Journal of Power Sources, 2014, 247: 813-820. |
34 | VAN HUMBECK J F, AUBREY M L, ALSBAIEE A, et al. Tetraarylborate polymer networks as single-ion conducting solid electrolytes[J]. Chemical Science, 2015, 6(10): 5499-5505. |
35 | SHIN D M, BACHMAN J E, TAYLOR M K, et al. A single-ion conducting borate network polymer as a viable quasi-solid electrolyte for lithium metal batteries[J]. Advanced Materials, 2020, 32(10): doi: 10.1002/adma.201905771. |
36 | LI H, DU Y F, ZHANG Q, et al. A single-ion conducting network as rationally coordinating polymer electrolyte for solid-state Li metal batteries[J]. Advanced Energy Materials, 2022, 12(13): doi: 10.1002/aenm.202103530. |
37 | WANG X, SUN J J, FENG C H, et al. Lithium bis(oxalate)borate crosslinked polymer electrolytes for high-performance lithium batteries[J]. Journal of Energy Chemistry, 2021, 55: 228-235. |
38 | LIU K W, JIANG S S, DZWINIEL T L, et al. Molecular design of a highly stable single-ion conducting polymer gel electrolyte[J]. ACS Applied Materials & Interfaces, 2020: doi: 10.1021/acsami.0c03363. |
39 | ZENG X F, DONG L N, FU J F, et al. Enhanced interfacial stability with a novel boron-centered crosslinked hybrid polymer gel electrolytes for lithium metal batteries[J]. Chemical Engineering Journal, 2022, 428: doi: 10.1016/j.cej.2021.131100. |
40 | ZHANG Y F, PAN M Z, LIU X P, et al. Overcoming the ambient-temperature operation limitation in lithium-ion batteries by using a single-ion polymer electrolyte fabricated by controllable molecular design[J]. Energy Technology, 2018, 6(2): 289-295. |
41 | ZHANG Y F, WANG J Y, TAN C, et al. Fire-retardant sp3 boron-based single ion conducting polymer electrolyte for safe, high efficiency and dendrite-free Li-metal batteries[J]. Journal of Membrane Science, 2021, 620: doi: 10.1016/j.memsci.2020.118921. |
42 | BANDYOPADHYAY S, GUPTA A, SRIVASTAVA R, et al. Bio-inspired design of electrospun poly(acrylonitrile) and novel ionene based nanofibrous mats as highly flexible solid state polymer electrolyte for lithium batteries[J]. Chemical Engineering Journal, 2022, 440: doi: 10.1016/j.cej.2022.135926. |
43 | DENG K R, QIN J X, WANG S J, et al. Effective suppression of lithium dendrite growth using a flexible single-ion conducting polymer electrolyte[J]. Small, 2018, 14(31): doi: 10.1002/smll.201801420. |
44 | ELIZALDE F, AMICI J, TRANO S, et al. Self-healable dynamic poly(urea-urethane) gel electrolyte for lithium batteries[J]. Journal of Materials Chemistry A, 2022, 10(23): 12588-12596. |
45 | HUANG Y J, SHI Z, WANG H L, et al. Shape-memory and self-healing polyurethane-based solid polymer electrolytes constructed from polycaprolactone segment and disulfide metathesis[J]. Energy Storage Materials, 2022, 51: 1-10. |
46 | 邹文洪, 樊佑, 张焱焱, 等. 安全固态锂电池室温聚合物基电解质的研究进展[J]. 化工进展, 2021, 40(9): 5029-5044. |
ZOU W H, FAN Y, ZHANG Y Y, et al. Research progress on room-temperature polymer-based electrolytes for safe solid-state lithium batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5029-5044. | |
47 | ZHOU B H, DENG T Z, YANG C L, et al. Self-healing and recyclable polymer electrolyte enabled with boronic ester transesterification for stabilizing ion deposition[J]. Advanced Functional Materials, 2023, 33(13): doi: 10.1002/adfm.202212005. |
48 | MA C, FENG Y M, XING F Z, et al. A borate decorated anion-immobilized solid polymer electrolyte for dendrite-free, long-life Li metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(34): 19970-19976. |
49 | ZHOU B H, ZHOU Y, LAI L J, et al. Fabrication of borate-based porous polymer electrolytes containing cyclic carbonate for high-performance lithium metal batteries[J]. ACS Applied Energy Materials, 2021, 4(9): 9582-9593. |
50 | LIU P, ZHANG J W, ZHONG L, et al. Interphase building of organic–inorganic hybrid polymer solid electrolyte with uniform intermolecular Li+ path for stable lithium metal batteries[J]. Small, 2021, 17(41): doi: 10.1002/smll.202102454. |
51 | MA J Y, MA X Y, ZHANG H P, et al. In-situ generation of poly(ionic liquid) flexible quasi-solid electrolyte supported by polyhedral oligomeric silsesquioxane/polyvinylidene fluoride electrospun membrane for lithium metal battery[J]. Journal of Membrane Science, 2022, 659: doi: 10.1016/j.memsci.2022.120811. |
52 | ZHANG J F, MA C, HOU H, et al. A star-shaped solid composite electrolyte containing multifunctional moieties with enhanced electrochemical properties for all solid-state lithium batteries[J]. Journal of Membrane Science, 2018, 552: 107-114. |
53 | LEE A S, LEE J H, HONG S M, et al. Boronic ionogel electrolytes to improve lithium transport for Li-ion batteries[J]. Electrochimica Acta, 2016, 215: 36-41. |
54 | DAI K, MA C, FENG Y M, et al. A borate-rich, cross-linked gel polymer electrolyte with near-single ion conduction for lithium metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(31): 18547-18557. |
55 | XU D, SU J M, JIN J, et al. In situ generated fireproof gel polymer electrolyte with Li6.4Ga0.2La3Zr2O12As initiator and ion-conductive filler[J]. Advanced Energy Materials, 2019, 9(25): doi: 10.1002/aenm.201900611. |
56 | DENG K R, GUAN T Y, LIANG F H, et al. Flame-retardant single-ion conducting polymer electrolytes based on anion acceptors for high-safety lithium metal batteries[J]. Journal of Materials Chemistry A, 2021, 9(12): 7692-7702. |
57 | 吴勰, 周莉, 薛照明. 基于螯合B类锂盐的固态聚合物电解质的合成及其性能[J]. 储能科学与技术, 2021, 10(1): 96-103. |
WU X, ZHOU L, XUE Z M. Synthesis and performance of solid polymer electrolytes based on chelated boron lithium salts[J]. Energy Storage Science and Technology, 2021, 10(1): 96-103. | |
58 | ZHANG S S. An unique lithium salt for the improved electrolyte of Li-ion battery[J]. Electrochemistry Communications, 2006, 8(9): 1423-1428. |
59 | MAO M, HUANG B H, LI Q D, et al. In-situ construction of hierarchical cathode electrolyte interphase for high performance LiNi0.8Co0.1Mn0.1O2/Li metal battery[J]. Nano Energy, 2020, 78: doi: 10.1016/j.nanoen.2020.105282. |
60 | LIU Z H, CHAI J C, XU G J, et al. Functional lithium borate salts and their potential application in high performance lithium batteries[J]. Coordination Chemistry Reviews, 2015, 292: 56-73. |
61 | GENG Z, LU J Z, LI Q, et al. Lithium metal batteries capable of stable operation at elevated temperature[J]. Energy Storage Materials, 2019, 23: 646-652. |
62 | CAO W Z, LU J Z, ZHOU K, et al. Organic-inorganic composite SEI for a stable Li metal anode by in situ polymerization[J]. Nano Energy, 2022, 95: doi: 10.1016/j.nanoen.2022.106983. |
63 | XU Q, YANG Y F, SHAO H X. Compatibility of lithium oxalyldifluoroborate with lithium metal anode in rechargeable batteries[J]. Electrochimica Acta, 2018, 259: 534-541. |
64 | WANG P, CUI X L, ZHAO D N, et al. Effects of soluble products decomposed from chelato-borate additives on formation of solid electrolyte interface layers[J]. Journal of Power Sources, 2022, 535: doi: 10.1016/j.jpowsour.2022.231451. |
65 | FU F, ZHENG Y, JIANG N, et al. A Dual-Salt PEO-based polymer electrolyte with Cross-Linked polymer network for High-Voltage lithium metal batteries[J]. Chemical Engineering Journal, 2022, 450: doi: 10.1016/j.cej.2022.137776. |
66 | 田宋炜, 周丽雪, 张秉乾, 等. 聚环氧乙烷聚合物电解质基高电压固态锂金属电池的研究进展[J]. 化学学报, 2022, 80(10): 1410-1423. |
TIAN S W, ZHOU L X, ZHANG B Q, et al. Key advances of high-voltage solid-state lithium metal batteries based on poly(ethylene oxide) polymer electrolytes[J]. Acta Chimica Sinica, 2022, 80(10): 1410-1423. | |
67 | HAN Q Y, WANG S Q, KONG W H, et al. Realizing compatibility of high voltage cathode and poly (ethylene oxide) electrolyte in all-solid-state lithium batteries by bilayer electrolyte design[J]. Chemical Engineering Journal, 2023, 454: doi: 10.1016/j.cej.2022.140104. |
68 | WU H, TANG B, DU X F, et al. LiDFOB initiated in situ polymerization of novel eutectic solution enables room-temperature solid lithium metal batteries[J]. Advanced Science, 2020, 7(23): doi: 10.1002/advs.202003370. |
69 | LIU Y L, XU Y L. Porous membrane host-derived in situ polymer electrolytes with double-stabilized electrode interface enable long cycling lithium metal batteries[J]. Chemical Engineering Journal, 2022, 433: doi: 10.1016/j.cej.2021.134471. |
70 | LIAN F, LI Y, HE Y, et al. Preparation of LiBOB via rheological phase method and its application to mitigate voltage fade of Li1.16[Mn0.75Ni0.25]0.84O2 cathode[J]. RSC Advances, 2015, 5(105): 86763-86770. |
71 | ZHANG B D, WANG L L, WANG X T, et al. Sustained releasing superoxo scavenger for tailoring the electrode-electrolyte interface on Li-rich cathode[J]. Energy Storage Materials, 2022, 53: 492-504. |
72 | JIAO S H, REN X D, CAO R G, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nature Energy, 2018, 3(9): 739-746. |
73 | CHENG S H S, LIU C, ZHU F Y, et al. (Oxalato)borate: The key ingredient for polyethylene oxide based composite electrolyte to achieve ultra-stable performance of high voltage solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal battery[J]. Nano Energy, 2021, 80: doi: 10.1016/j.nanoen.2020.105562. |
74 | QIAO L X, CUI Z L, CHEN B B, et al. A promising bulky anion based lithium borate salt for lithium metal batteries[J]. Chemical Science, 2018, 9(14): 3451-3458. |
75 | JØRGENSEN M, SHEA P T, TOMICH A W, et al. Understanding superionic conductivity in lithium and sodium salts of weakly coordinating Closo-hexahalocarbaborate anions[J]. Chemistry of Materials, 2020, 32(4): 1475-1487. |
76 | GREEN M, KAYDANIK K, OROZCO M, et al. Closo-borate gel polymer electrolyte with remarkable electrochemical stability and a wide operating temperature window[J]. Advanced Science, 2022, 9(16): doi: 10.1002/advs.202106032. |
77 | SUN Z Y, ZHOU H B, LUO X H, et al. Design of a novel electrolyte additive for high voltage LiCoO2 cathode lithium-ion batteries: Lithium 4-benzonitrile trimethyl borate[J]. Journal of Power Sources, 2021, 503: doi: 10.1016/j.jpowsour.2021.230033. |
78 | CHAE O B, ADIRAJU V A K, LUCHT B L. Lithium cyano tris(2, 2, 2-trifluoroethyl) borate as a multifunctional electrolyte additive for high-performance lithium metal batteries[J]. ACS Energy Letters, 2021, 6(11): 3851-3857. |
79 | LI Y C, VEITH G M, BROWNING K L, et al. Lithium malonatoborate additives enabled stable cycling of 5V lithium metal and lithium ion batteries[J]. Nano Energy, 2017, 40: 9-19. |
80 | ROY B, CHEREPANOV P, NGUYEN C, et al. Lithium borate ester salts for electrolyte application in next-generation high voltage lithium batteries[J]. Advanced Energy Materials, 2021, 11(36): doi: 10.1002/aenm.202101422. |
81 | JIN Z Q, XIE K, HONG X B, et al. Capacity fading mechanism in lithium sulfur cells using poly(ethylene glycol)-borate ester as plasticizer for polymer electrolytes[J]. Journal of Power Sources, 2013, 242: 478-485. |
82 | KAYNAK M, YUSUF A, AYDIN H, et al. Enhanced ionic conductivity in borate ester plasticized Polyacrylonitrile electrolytes for lithium battery application[J]. Electrochimica Acta, 2015, 164: 108-113. |
83 | XIANG J W, ZHANG Y, ZHANG B, et al. A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature[J]. Energy & Environmental Science, 2021, 14(6): 3510-3521. |
84 | LI G J, FENG Y, ZHU J Y, et al. Achieving a highly stable electrode/electrolyte interface for a nickel-rich cathode via an additive-containing gel polymer electrolyte[J]. ACS Applied Materials & Interfaces, 2022, 14(32): 36656-36667. |
85 | YANG L Y, WANG Z J, FENG Y C, et al. Flexible composite solid electrolyte facilitating highly stable "soft contacting" Li-electrolyte interface for solid state lithium-ion batteries[J]. Advanced Energy Materials, 2017, 7(22): doi: 10.1002/aenm.201770130. |
[1] | Birong TAN, Jianhua DU, Xianghu YE, Xin CAO, Chang QU. Overview of SOC estimation methods for lithium-ion batteries based on model [J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010. |
[2] | Ya CHEN, Liyun FAN, Jingxue LI, Meisi LI, Chao XU, Yuanqi GU. Research on heat dissipation of lithium-ion batteries with secondary flow serpentine channel [J]. Energy Storage Science and Technology, 2023, 12(6): 1880-1889. |
[3] | Xijiang SHEN, Qiangling DUAN, Peng QIN, Qingsong WANG, Jinhua SUN. Experimental study on thermal runaway mitigation and heat transfer characteristics of ternary lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1862-1871. |
[4] | Jidong ZHANG, Zhan YANG, Jianguo HUANG. Fabrication and electrochemical performance of micro-nanostructured C/TiO2/CuMoO4 fibrous composite based on natural cellulose [J]. Energy Storage Science and Technology, 2023, 12(5): 1616-1624. |
[5] | Yuanchang DONG, Xiaoqiong PANG, Jianfang JIA, Yuanhao SHI, Jie WEN, Xiao LI, Xin ZHANG. Remaining useful life prediction of lithium-ion batteries based on SVD-SAE-GPR [J]. Energy Storage Science and Technology, 2023, 12(4): 1257-1267. |
[6] | Feng LIU, Haizhong CHEN. Lithium-ion battery state prediction based on CEEMDAN and ISOA-ELM [J]. Energy Storage Science and Technology, 2023, 12(4): 1244-1256. |
[7] | Shugang LIU, Bo MENG, Zhenglong LI, Yaxiong YANG, Jian CHEN. Electrochemical performance of chemical prelithiated Li x (Mg, Ni, Zn, Cu, Co) 1-x O high-entropy oxide as anode material for lithium ion battery [J]. Energy Storage Science and Technology, 2023, 12(3): 743-753. |
[8] | Xiuliang CHANG, Xichao LI, Longzhou JIA, Shouli WEI, Jinghao WANG, Zuoqiang DAI, Lili ZHENG. Heat generation characteristics of overcharged cyclic aging batteries [J]. Energy Storage Science and Technology, 2023, 12(3): 685-697. |
[9] | Yulong ZHANG, Weiling LUAN, Senming WU. Quantitative analysis of the lithium plating-stripping process of lithium-ion batteries using external characteristic methods [J]. Energy Storage Science and Technology, 2023, 12(2): 529-535. |
[10] | Huimin ZHANG, Jing WANG, Yibo WANG, Jiaxin ZHENG, Jingyi QIU, Gaoping CAO, Hao ZHANG. Multiscale modeling of the SEI of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 366-382. |
[11] | Qunbin ZHANG, Tao DONG, Jingjing LI, Yanxia LIU, Haitao ZHANG. Research progress on the recovery and high-value utilization of spent electrolyte from lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2798-2810. |
[12] | Shaojun NIU, Kai WU, Guobin ZHU, Yan WANG, Qunting QU, Honghe ZHENG. Studies on the swelling force during cycling of Si-based anodes in lithium ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2989-2994. |
[13] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[14] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[15] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||