Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (4): 1083-1092.doi: 10.19799/j.cnki.2095-4239.2022.0532
• Energy Storage Materials and Devices • Previous Articles Next Articles
Weibin HUANG(), Biao ZHANG, Jincheng FAN, Wei YANG, Hanbo ZOU(), Shengzhou CHEN()
Received:
2022-09-19
Revised:
2023-02-14
Online:
2023-04-05
Published:
2023-05-08
Contact:
Hanbo ZOU, Shengzhou CHEN
E-mail:1358622952@qq.com;zouhb@gzhu.edu.cn;szchen@gzhu.edu.cn
CLC Number:
Weibin HUANG, Biao ZHANG, Jincheng FAN, Wei YANG, Hanbo ZOU, Shengzhou CHEN. Preparation and modification of ZIF-8 composite PEO based solid electrolyte[J]. Energy Storage Science and Technology, 2023, 12(4): 1083-1092.
1 | WANG M Q, LIU X L, QIN B Y, et al. In-situ etching and ion exchange induced 2D-2D MXene@Co9S8/CoMo2S4 heterostructure for superior Na+ storage[J]. Chemical Engineering Journal, 2023, 451: doi: 10.1016/j.cej.2022.138508. |
2 | CHEN W, CHEN J L, DENG J Y, et al. Improvement of cycling stability of Li1.2Mn0.54Co0.13Ni0.13O2 microrods cathode material modified with in situ polymerization of aniline in HTFSI solution[J]. International Journal of Energy Research, 2022, 46(15): 22960-22970. |
3 | 周伟东, 黄秋, 谢晓新, 等. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
ZHOU W D, HUANG Q, XIE X X, et al. Research progress of polymer electrolyte for solid state lithium batteries[J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. | |
4 | WU Y X, LI Y, WANG Y, et al. Advances and prospects of PVDF based polymer electrolytes[J]. Journal of Energy Chemistry, 2022, 64: 62-84. |
5 | CHENG X B, ZHANG R, ZHAO C Z, et al. A review of solid electrolyte interphases on lithium metal anode[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2015, 3(3): doi: 10.1002/advs.201500213. |
6 | DU Z Z, AI W, YANG J, et al. In situ fabrication of Ni2P nanoparticles embedded in nitrogen and phosphorus codoped carbon nanofibers as a superior anode for Li-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14795-14801. |
7 | 汤匀, 岳芳, 郭楷模, 等. 全固态锂电池技术发展趋势与创新能力分析[J]. 储能科学与技术, 2022, 11(1): 359-369. |
TANG Y, YUE F, GUO K M, et al. Analysis of the development trend and the innovation ability of an all-solid-state lithium battery technology[J]. Energy Storage Science and Technology, 2022, 11(1): 359-369. | |
8 | GUAN P Y, ZHOU L, YU Z L, et al. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 43: 220-235. |
9 | JI X Q, XIA Q, XU Y X, et al. A review on progress of lithium-rich Manganese-based cathodes for lithium ion batteries[J]. Journal of Power Sources, 2021, 487: doi:10.1016/j.jpowsour.2020.229362. |
10 | MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nature Communications, 2020, 11(1): 1-9. |
11 | BORAH S, GUHA A K, SAIKIA L, et al. Nanofiber induced enhancement of electrical and electrochemical properties in polymer gel electrolytes for application in energy storage devices[J]. Journal of Alloys and Compounds, 2021, 886: doi:10.1016/j.jallcom.2021.161173 |
12 | 许卓, 郑莉莉, 陈兵, 等. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6): 2117-2126. |
XU Z, ZHENG L L, CHEN B, et al. Overview of research on composite electrolytes for solid-state batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126. | |
13 | ZHANG H, OTEO U, ZHU H J, et al. Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion[J]. Angewandte Chemie (International Ed in English), 2019, 58(23): 7829-7834. |
14 | ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229-252. |
15 | ZHANG Z, YINGHUANG, ZHANG G Z, et al. Three-dimensional fiber network reinforced polymer electrolyte for dendrite-free all-solid-state lithium metal batteries[J]. Energy Storage Materials, 2021, 41: 631-641. |
16 | 刘当玲, 王诗敏, 高智慧, 等. 三维NZSPO/PAN-[PEO-NaTFST]复合钠离子电池固体电解质[J]. 储能科学与技术, 2021, 10(3): 931-937. |
LIU D L, WANG S M, GAO Z H, et al. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST]sodium-battery-composite solid electrolyte[J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. | |
17 | XU L, WEI K Y, CAO Y, et al. The synergistic effect of the PEO-PVA-PESf composite polymer electrolyte for all-solid-state lithium-ion batteries[J]. RSC Advances, 2020, 10(9): 5462-5467. |
18 | CHEN H, ZHOU C J, DONG X R, et al. Revealing the superiority of fast ion conductor in composite electrolyte for dendrite-free lithium-metal batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22978-22986. |
19 | FAN L Z, NAN C W, ZHAO S J. Effect of modified SiO2 on the properties of PEO-based polymer electrolytes[J]. Solid State Ionics, 2003, 164(1/2): 81-86. |
20 | ROSENWINKEL M P, ANDERSSON R, MINDEMARK J, et al. Coordination effects in polymer electrolytes: Fast Li+ transport by weak ion binding[J]. The Journal of Physical Chemistry C, 2020, 124(43): 23588-23596. |
21 | SHENG O W, JIN C B, LUO J M, et al. Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance[J]. Nano Letters, 2018, 18(5): 3104-3112. |
22 | 张林森, 王士奇, 王利霞, 等. PEO基Li+-g-C3N4复合固态电解质的制备及其电化学性能[J]. 储能科学与技术, 2022, 11(11): 3463-3469. |
ZHANG L S, WANG S Q, WANG L X, et al. Synthesis and performances of Li+ modified g-C3N4 for PEO-based composite solid electrolyte[J]. Energy Storage Science and Technology, 2022, 11(11): 3463-3469. | |
23 | LI X L, YANG L, SHAO D S, et al. Preparation and application of poly (ethylene oxide)-based all solid-state electrolyte with a walnut-like SiO2 as nano-fillers[J]. Journal of Applied Polymer Science, 2020, 137(24): 48810. |
24 | LIANG F Q, WEN Z Y. MOF/poly(ethylene oxide) composite polymer electrolyte for solid-state lithium battery[J]. Journal of Inorganic Materials, 2021, 36(3): 332. |
25 | QI Z Y, PEI Y C, GOH T W, et al. Conversion of confined metal@ZIF-8 structures to intermetallic nanoparticles supported on nitrogen-doped carbon for electrocatalysis[J]. Nano Research, 2018, 11(6): 3469-3479. |
26 | YANG X B, WEN Z D, WU Z L, et al. Synthesis of ZnO/ZIF-8 hybrid photocatalysts derived from ZIF-8 with enhanced photocatalytic activity[J]. Inorganic Chemistry Frontiers, 2018, 5(3): 687-693. |
27 | TRAN U P N, LE K K A, PHAN N T S. Expanding applications of metal-organic frameworks: Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the Knoevenagel reaction[J]. ACS Catalysis, 2011, 1(2): 120-127. |
28 | CHIZALLET C, LAZARE S, BAZER-BACHI D, et al. Catalysis of transesterification by a nonfunctionalized metal-organic framework: Acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations[J]. Journal of the American Chemical Society, 2010, 132(35): 12365-12377. |
29 | XI J Y, QIU X P, CUI M Z, et al. Enhanced electrochemical properties of PEO-based composite polymer electrolyte with shape-selective molecular sieves[J]. Journal of Power Sources, 2006, 156(2): 581-588. |
30 | SUN C, ZHANG J H, YUAN X F, et al. ZIF-8-based quasi-solid-state electrolyte for lithium batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46671-46677. |
31 | KASNERYK V, POSCHMANN M P M, SERDECHNOVA M, et al. Formation and structure of ZIF-8@PEO coating on the surface of zinc[J]. Surface and Coatings Technology, 2022, 445: doi:10.1016/j.surfcoat.2022.128733. |
32 | JAYATHILAKA P A R D, DISSANAYAKE M A K L, ALBINSSON I, et al. Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9 LiTFSI polymer electrolyte system[J]. Electrochimica Acta, 2002, 47(20): 3257-3268. |
[1] | Zhixiang CHENG, Wei CAO, Bo HU, Yunfang CHENG, Xin LI, Lihua JIANG, Kaiqiang JIN, Qingsong WANG. Thermal runaway and explosion propagation characteristics of large lithium iron phosphate battery for energy storage station [J]. Energy Storage Science and Technology, 2023, 12(3): 923-933. |
[2] | Kaiyuan XUE, Yan WANG, Junwei LANG, Tian HE, Zuoqiang DAI, Zongmin ZHENG. The progress in applications of dicationic ionic liquids in the energy storage and conversion system [J]. Energy Storage Science and Technology, 2023, 12(3): 808-821. |
[3] | Zhihao ZHANG, Xiaogang JIN, Hengxing BAO, Xiang LING. Experimental study of Ca(OH)2/CaO thermochemical energy storage in a mixed heating reactor [J]. Energy Storage Science and Technology, 2023, 12(1): 227-235. |
[4] | Yang LIU, Weijun TENG, Qingfa GU, Xin SUN, Yuliang TAN, Zhijin FANG, Jianlin LI. Scaled-up diversified electrochemical energy storage LCOE and its economic analysis [J]. Energy Storage Science and Technology, 2023, 12(1): 312-318. |
[5] | Hong LI, Qiang ZHANG. A review of energy storage science and technology projects supported by national key R&D program [J]. Energy Storage Science and Technology, 2022, 11(9): 2691-2701. |
[6] | Pengbo ZHAI, Dongmei CHANG, Zhijie BI, Ning ZHAO, Xiangxin GUO. Research progress on key interfacial issues in lithium lanthanum zirconium oxide-based solid-state [J]. Energy Storage Science and Technology, 2022, 11(9): 2847-2865. |
[7] | Jinghua WU, Jing YANG, Gaozhan LIU, Zhiyan WANG, Zhihua ZHANG, Hailong YU, Xiayin YAO, Xuejie HUANG. Review and prospective of solid-state lithium batteries in the past decade (2011—2021) [J]. Energy Storage Science and Technology, 2022, 11(9): 2713-2745. |
[8] | Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming LIU, Min YAN, Shun TANG, Yuancheng CAO, Shijie CHENG, Weixin ZHANG. Patent analysis of fire-protection technology of lithium-ion energy storage system [J]. Energy Storage Science and Technology, 2022, 11(8): 2664-2670. |
[9] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[10] | Xingxing WANG, Ziyu SONG, Hao WU, Wenfang FENG, Zhibin ZHOU, Heng ZHANG. Advances in conducting lithium salts for solid polymer electrolytes [J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235. |
[11] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[12] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[13] | Siqi SHI, Zhangwei TU, Xinxin ZOU, Shiyu SUN, Zhengwei YANG, Yue LIU. Applying data-driven machine learning to studying electrochemical energy storage materials [J]. Energy Storage Science and Technology, 2022, 11(3): 739-759. |
[14] | Xiubo ZHANG, Chang YU, Jinhe YU, Yingbin LIU, Yuanyang XIE, Jianjian WANG, Shuqin LAN, Jieshan QIU. Recent progress of polymer electrolytes for supercapacitors under extreme environments [J]. Energy Storage Science and Technology, 2022, 11(12): 3808-3818. |
[15] | Mengyao QI, Yichen HOU, Lei CHEN, Lijun YANG. Numerical simulation of a novel radial all-vanadium flow battery cell [J]. Energy Storage Science and Technology, 2022, 11(10): 3209-3220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||