Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (3): 808-821.doi: 10.19799/j.cnki.2095-4239.2022.0492
• Energy Storage Materials and Devices • Previous Articles Next Articles
Kaiyuan XUE1,3,4(), Yan WANG4(), Junwei LANG4, Tian HE2,3, Zuoqiang DAI2,3, Zongmin ZHENG2,3()
Received:
2022-08-31
Revised:
2022-11-10
Online:
2023-03-05
Published:
2023-04-14
Contact:
Yan WANG, Zongmin ZHENG
E-mail:997357549@qq.com;wangyan@licp.cas.cn;zmzheng@qdu.edu.cn
CLC Number:
Kaiyuan XUE, Yan WANG, Junwei LANG, Tian HE, Zuoqiang DAI, Zongmin ZHENG. The progress in applications of dicationic ionic liquids in the energy storage and conversion system[J]. Energy Storage Science and Technology, 2023, 12(3): 808-821.
Fig. 10
(a) Photographs of the PVT-EMIMTFSI electrolytes during the self-healing process; (b) the electrochemical window of PVT-EMIMTFSI electrolytes; (c) the cycling stabilities of Li/PVT-45%EMIMTFSI/LiFePO4 cells at room temperature;[ 51](d) the mechanical properties of DPIL-6-SPE at different repairing time; (e) the cycling performance of LiFePO4/DPIL-6-SPE/Li batteries at 0.1 C at 60 ℃ [ 52]"
1 | GOODENOUGH J B. Energy storage materials: A perspective[J]. Energy Storage Materials, 2015, 1: 158-161. |
2 | OLABI A G, ABDELKAREEM M A. Energy storage systems towards 2050[J]. Energy, 2021, 219: doi: 10.1016/j.energy.2020.119634. |
3 | LI M, LU J, CHEN Z W, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): doi: 10.1002/adma.201800561. |
4 | POONAM, SHARMA K, ARORA A, et al. Review of supercapacitors: Materials and devices[J]. Journal of Energy Storage, 2019, 21: 801-825. |
5 | HOSSEINI S, MASOUDI SOLTANI S, LI Y Y. Current status and technical challenges of electrolytes in zinc-air batteries: An in-depth review[J]. Chemical Engineering Journal, 2021, 408: doi: 10.1016/j.cej.2020.127241. |
6 | SINGLA M K, NIJHAWAN P, OBEROI A S. Hydrogen fuel and fuel cell technology for cleaner future: A review[J]. Environmental Science and Pollution Research International, 2021, 28(13): 15607-15626. |
7 | NAYAK P K, MAHESH S, SNAITH H J, et al. Photovoltaic solar cell technologies: Analysing the state of the art[J]. Nature Reviews Materials, 2019, 4(4): 269-285. |
8 | YAMADA Y, WANG J H, KO S, et al. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nature Energy, 2019, 4(4): 269-280. |
9 | LOGAN E R, DAHN J R. Electrolyte design for fast-charging Li-ion batteries[J]. Trends in Chemistry, 2020, 2(4): 354-366. |
10 | DOUGHTY D H, ROTH E P. A general discussion of Li ion battery safety[J]. Electrochemical Society Interface, 2012: doi: 10.1149/2.F03122if. |
11 | LIU K, LIU Y Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6): doi: 10.1126/sciadv.aas9820. |
12 | HU L B, XU K. Nonflammable electrolyte enhances battery safety[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): 3205-3206. |
13 | GUO Y, WU S C, HE Y B, et al. Solid-state lithium batteries: Safety and prospects[J]. eScience, 2022, 2(2): 138-163. |
14 | ZALOSH R, GANDHI P, BAROWY A. Lithium-ion energy storage battery explosion incidents[J]. Journal of Loss Prevention in the Process Industries, 2021, 72: doi: 10.1016/j.jlp.2021.104560. |
15 | WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. |
16 | HENRIKSEN M, VAAGSAETHER K, LUNDBERG J, et al. Explosion characteristics for Li-ion battery electrolytes at elevated temperatures[J]. Journal of Hazardous Materials, 2019, 371: 1-7. |
17 | WALDEN U P. Molecular weights and electrical conductivity of several fused salts[J]. Bull Acad Imper Sci, 1914, 8: 405-422. |
18 | GALIŃSKI M, LEWANDOWSKI A, STĘPNIAK I. Ionic liquids as electrolytes[J]. Electrochimica Acta, 2006, 51(26): 5567-5580. |
19 | MINAMI I. Ionic liquids in tribology[J]. Molecules (Basel, Switzerland), 2009, 14(6): 2286-2305. |
20 | BERMÚDEZ M D, JIMÉNEZ A E, SANES J, et al. Ionic liquids as advanced lubricant fluids[J]. Molecules (Basel, Switzerland), 2009, 14(8): 2888-2908. |
21 | WASSERSCHEID P, KEIM W. Ionic liquids—New "solutions" for transition metal catalysis[J]. Angewandte Chemie, 2000, 39(21): 3772-3789. |
22 | PAUL A, MANDAL P K, SAMANTA A. On the optical properties of the imidazolium ionic liquids[J]. The Journal of Physical Chemistry B, 2005, 109(18): 9148-9153. |
23 | DUPONT J, SUAREZ P A Z. Physico-chemical processes in imidazolium ionic liquids[J]. Physical Chemistry Chemical Physics: PCCP, 2006, 8(21): 2441-2452. |
24 | CANONGIA LOPES J N, COSTA GOMES M F, PÁDUA A A H. Nonpolar, polar, and associating solutes in ionic liquids[J]. The Journal of Physical Chemistry B, 2006, 110(34): 16816-16818. |
25 | ENDRES F, ZEIN EL ABEDIN S. Air and water stable ionic liquids in physical chemistry[J]. Physical Chemistry Chemical Physics: PCCP, 2006, 8(18): 2101-2116. |
26 | GUPTA H, SHALU, BALO L, et al. Effect of temperature on electrochemical performance of ionic liquid based polymer electrolyte with Li/LiFePO4 electrodes[J]. Solid State Ionics, 2017, 309: 192-199. |
27 | ARANO K, BEGIC S, CHEN F F, et al. Tuning the formation and structure of the silicon electrode/ionic liquid electrolyte interphase in superconcentrated ionic liquids[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28281-28294. |
28 | ZHANG S C, LI S Y, LU Y Y. Designing safer lithium-based batteries with nonflammable electrolytes: A review[J]. eScience, 2021, 1(2): 163-177. |
29 | ZHOU D, WANG H L, MAO N, et al. High energy supercapacitors based on interconnected porous carbon nanosheets with ionic liquid electrolyte[J]. Microporous and Mesoporous Materials, 2017, 241: 202-209. |
30 | TIRUYE G A, MUÑOZ-TORRERO D, PALMA J, et al. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids[J]. Journal of Power Sources, 2016, 326: 560-568. |
31 | LANG J W, ZHANG X, LIU L, et al. Highly enhanced energy density of supercapacitors at extremely low temperatures[J]. Journal of Power Sources, 2019, 423: 271-279. |
32 | MEI X Y, YUE Z, MA Q, et al. Synthesis and electrochemical properties of new dicationic ionic liquids[J]. Journal of Molecular Liquids, 2018, 272: 1001-1018. |
33 | ANDERSON J L, DING R F, ELLERN A, et al. Structure and properties of high stability geminal dicationic ionic liquids[J]. Journal of the American Chemical Society, 2005, 127(2): 593-604. |
34 | RAX, SINGH A, RASOOL A, et al. Dicationic ionic liquids and their applications[J]. The Electrochemical Society Interface, 2019: doi: 10.21767/2394-3718.100045. |
35 | LI J, KANG Y, LI B H, et al. PEG-linked functionalized dicationic ionic liquids for highly efficient SO2 capture through physical absorption[J]. Energy & Fuels, 2018, 32(12): 12703-12710. |
36 | BOUMEDIENE M, HADDAD B, PAOLONE A, et al. Synthesis, thermal stability, vibrational spectra and conformational studies of novel dicationic meta-xylyl linked bis-1-methylimidazolium ionic liquids[J]. Journal of Molecular Structure, 2019, 1186: 68-79. |
37 | CLARKE C J, BUI-LE L, HALLETT J P, et al. Thermally-stable imidazolium dicationic ionic liquids with pyridine functional groups[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(23): 8762-8772. |
38 | GUO W H, ZUO M H, ZHAO J, et al. Novel Brønsted–Lewis acidic di-cationic ionic liquid for efficient conversion carbohydrate to platform compound[J]. Cellulose, 2020, 27(12): 6897-6908. |
39 | TALEBI M, PATIL R A, ARMSTRONG D W. Physicochemical properties of branched-chain dicationic ionic liquids[J]. Journal of Molecular Liquids, 2018, 256: 247-255. |
40 | SUN Y X, WANG Y Y, SHEN B B, et al. Synthesis and investigation of physico-chemical properties of dicationic ionic liquids[J]. Royal Society Open Science, 2018, 5(12): doi: 10.1098/rsos.181230. |
41 | TURCHENIUK K, BONDAREV D, SINGHAL V, et al. Ten years left to redesign lithium-ion batteries[J]. Nature, 2018, 559(7715): 467-470. |
42 | CHOMBO P V, LAOONUAL Y. A review of safety strategies of a Li-ion battery[J]. Journal of Power Sources, 2020, 478: doi: 10.1016/j.jpowsour.2020.228649. |
43 | SLOOP S E, KERR J B, KINOSHITA K. The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge[J]. Journal of Power Sources, 2003, 119: 330-337. |
44 | WANG Q S, JIANG L H, YU Y, et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano Energy, 2019, 55: 93-114. |
45 | CHAKRABORTY M, BARIK S, MAHAPATRA A, et al. Effect of lithium-ion on the structural organization of monocationic and dicationic ionic liquids[J]. The Journal of Physical Chemistry B, 2021, 125(47): 13015-13026. |
46 | CHATTERJEE K, PATHAK A D, LAKMA A, et al. Synthesis, characterization and application of a non-flammable dicationic ionic liquid in lithium-ion battery as electrolyte additive[J]. Scientific Reports, 2020, 10(1): 1-12. |
47 | NIRMALE T C, KHUPSE N D, KALUBARME R S, et al. Imidazolium-based dicationic ionic liquid electrolyte: Strategy toward safer lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(26): 8297-8304. |
48 | VÉLEZ J F, VÁZQUEZ-SANTOS M B, AMARILLA J M, et al. Geminal pyrrolidinium and piperidinium dicationic ionic liquid electrolytes. Synthesis, characterization and cell performance in LiMn2O4 rechargeable lithium cells[J]. Journal of Power Sources, 2019, 439: doi: 10.1016/j.jpowsour.2019.227098. |
49 | VÉLEZ J F, VAZQUEZ-SANTOS M B, AMARILLA J M, et al. Asymmetrical imidazolium-trialkylammonium room temperature dicationic ionic liquid electrolytes for Li-ion batteries[J]. Electrochimica Acta, 2018, 280: 171-180. |
50 | TSENG Y C, HSIANG S H, TSAO C H, et al. In situ formation of polymer electrolytes using a dicationic imidazolium cross-linker for high-performance lithium ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(9): 5796-5806. |
51 | TIAN X L, YANG P, YI Y K, et al. Self-healing and high stretchable polymer electrolytes based on ionic bonds with high conductivity for lithium batteries[J]. Journal of Power Sources, 2020, 450: doi: 10.1016/j.jpowsour.2019.227629. |
52 | LI R J, FANG Z, WANG C, et al. Six-armed and dicationic polymeric ionic liquid for highly stretchable, nonflammable and Notch-insensitive intrinsic self-healing solid-state polymer electrolyte for flexible and safe lithium batteries[J]. Chemical Engineering Journal, 2022, 430: doi: 10.1016/j.cej.2021.132706 |
53 | CAI K D, MU W F, ZHANG Q G, et al. Study on the application of N, N ʹ-1, 4-diethyl, triethylene, and diamine tetrafluoroborate in supercapacitors[J]. Electrochemical and Solid-State Letters, 2010, 13(11): A147. |
54 | ZHENG C, YOSHIO M, QI L, et al. A divalent quaternary alkyl ammonium salt as the electrolyte for high-energy electric double-layer capacitors[J]. Journal of Power Sources, 2012, 220: 169-172. |
55 | JHA M K, SUNARIWAL N, PARKER B J, et al. Multi-cationic ionic liquid combination enabling 86-fold enhancement in frequency response and superior energy density in all-solid-state supercapacitors[J]. Journal of Energy Storage, 2022, 53: doi: 10.1016/j.est.2022.105164. |
56 | LI S, ZHU M Y, FENG G. The effects of dication symmetry on ionic liquid electrolytes in supercapacitors[J]. Journal of Physics Condensed Matter: an Institute of Physics Journal, 2016, 28(46): doi: 10.1088/0953-8984/28/46/464005. |
57 | LEONG K W, WANG Y F, NI M, et al. Rechargeable Zn-air batteries: Recent trends and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2022, 154: doi: 10.1016/j.rser.2021.111771 |
58 | XU M, DOU H Z, ZHANG Z, et al. Hierarchically nanostructured solid-state electrolyte for flexible rechargeable zinc-air batteries[J]. Angewandte Chemie (International Ed in English), 2022, 61(23): doi: 10.1002/anie.202117703. |
59 | LI G Q, KUJAWSKI W, RYNKOWSKA E. Advancements in proton exchange membranes for high-performance high-temperature proton exchange membrane fuel cells (HT-PEMFC)[J]. Reviews in Chemical Engineering, 2022, 38(3): 327-346. |
60 | ALASHKAR A, AL-OTHMAN A, TAWALBEH M, et al. A critical review on the use of ionic liquids in proton exchange membrane fuel cells[J]. Membranes, 2022, 12(2): 178. |
61 | HOOSHYARI K, JAVANBAKHT M, ADIBI M. Novel composite membranes based on PBI and dicationic ionic liquids for high temperature polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2016, 205: 142-152. |
62 | HOOSHYARI K, JAVANBAKHT M, ADIBI M. Novel composite membranes based on dicationic ionic liquid and polybenzimidazole mixtures as strategy for enhancing thermal and electrochemical properties of proton exchange membrane fuel cells applications at high temperature[J]. International Journal of Hydrogen Energy, 2016, 41(25): 10870-10883. |
63 | RAJABI Z, JAVANBAKHT M, HOOSHYARI K, et al. Phosphoric acid doped polybenzimidazole based polymer electrolyte membrane and functionalized SBA-15 mesoporous for elevated temperature fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(66): 33241-33259. |
64 | IFTIKHAR H, SONAI G G, HASHMI S G, et al. Progress on electrolytes development in dye-sensitized solar cells[J]. Materials (Basel, Switzerland), 2019, 12(12): 1998. |
65 | HE T, WANG Y F, ZENG J H. Stable, high-efficiency pyrrolidinium-based electrolyte for solid-state dye-sensitized solar cells[J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21381-21390. |
66 | KWABI D G, JI Y L, AZIZ M J. Electrolyte lifetime in aqueous organic redox flow batteries: A critical review[J]. Chemical Reviews, 2020, 120(14): 6467-6489. |
67 | ZHANG C K, ZHANG L Y, DING Y, et al. Progress and prospects of next-generation redox flow batteries[J]. Energy Storage Materials, 2018, 15: 324-350. |
68 | HU B, HU M W, LUO J, et al. A stable, low permeable TEMPO catholyte for aqueous total organic redox flow batteries[J]. Advanced Energy Materials, 2022, 12(8): doi: 10.1002/aenm.202102577. |
69 | AHN S, JANG J H, KANG J, et al. Systematic designs of dicationic heteroarylpyridiniums as negolytes for nonaqueous redox flow batteries[J]. ACS Energy Letters, 2021, 6(9): 3390-3397. |
70 | ZHANG G R, ETZOLD B J M. Ionic liquids in electrocatalysis[J]. Journal of Energy Chemistry, 2016, 25(2): 199-207. |
71 | GUO Y N, HE D L, XIE A M, et al. The electrochemical oxidation of hydroquinone and catechol through a novel poly-geminal dicationic ionic liquid (PGDIL)-TiO2 composite film electrode[J]. Polymers, 2019, 11(11): 1907. |
72 | MIRÓ R, FERNÁNDEZ-LLAMAZARES E, GODARD C, et al. Synergism between iron porphyrin and dicationic ionic liquids: Tandem CO2 electroreduction-carbonylation reactions[J]. Chemical Communications(Cambridge, England), 2022, 58(75): 10552-10555. |
[1] | Xin SHEN, Rui ZHANG, Chenzi ZHAO, Peng WU, Yutong ZHANG, Jundong ZHANG, Lizhen FAN, Quanbing LIU, Aibing CHEN, Qiang ZHANG. Recent advances in mechano-electrochemistry in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2781-2797. |
[2] | Jinghua WU, Jing YANG, Gaozhan LIU, Zhiyan WANG, Zhihua ZHANG, Hailong YU, Xiayin YAO, Xuejie HUANG. Review and prospective of solid-state lithium batteries in the past decade (2011—2021) [J]. Energy Storage Science and Technology, 2022, 11(9): 2713-2745. |
[3] | Pengbo ZHAI, Dongmei CHANG, Zhijie BI, Ning ZHAO, Xiangxin GUO. Research progress on key interfacial issues in lithium lanthanum zirconium oxide-based solid-state [J]. Energy Storage Science and Technology, 2022, 11(9): 2847-2865. |
[4] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[5] | XIE Chenglu, HUANG Xiankun, KANG Lixia, LIU Yongzhong. Electrocatalytic performances of Ru nanoparticles supported on carbon nanotubes by colloidal solution for synthetic ammonia [J]. Energy Storage Science and Technology, 2022, 11(6): 1947-1956. |
[6] | Xingxing WANG, Ziyu SONG, Hao WU, Wenfang FENG, Zhibin ZHOU, Heng ZHANG. Advances in conducting lithium salts for solid polymer electrolytes [J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235. |
[7] | Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science [J]. Energy Storage Science and Technology, 2022, 11(3): 818-833. |
[8] | Linhan XIE, Wanzhong LI, Qianqian ZHANG, Gaoping CAO, Jingyi QIU, Hai MING, Wei FENG. Research advances in plant-power generation technology [J]. Energy Storage Science and Technology, 2022, 11(2): 442-466. |
[9] | Xiubo ZHANG, Chang YU, Jinhe YU, Yingbin LIU, Yuanyang XIE, Jianjian WANG, Shuqin LAN, Jieshan QIU. Recent progress of polymer electrolytes for supercapacitors under extreme environments [J]. Energy Storage Science and Technology, 2022, 11(12): 3808-3818. |
[10] | Jialin CAI, Yizhe CHEN, Joey Chung‐Yen JUNG, Jiujun ZHANG, Shiming ZHANG. Microwave synthesis of carbon-supported platinum for oxygen reduction electrocatalysis [J]. Energy Storage Science and Technology, 2022, 11(12): 3800-3807. |
[11] | Xin WANG, Pei HU, Yuanming ZHOU, Jinxia XU, Yan JIANG. Fast synthesis of Nb2O5 nanosheets derived from Nb2C MXene for lithium ion capacitors [J]. Energy Storage Science and Technology, 2022, 11(1): 38-44. |
[12] | Feng HE, Jingjing ZHANG, Yijun CHEN, Jian ZHANG, Deli WANG. Recent progress on carbon-based catalysts for electrochemical synthesis of H2O2 via oxygen reduction reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 1963-1976. |
[13] | Yue SU, Xuhua LIU, Fanglei ZENG, Yurong REN, Bencai LIN. Preparation and properties of polyvinylidene fluoride/polyvinylidene fluoride sulfonate lithium/lithium salt composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(6): 2069-2076. |
[14] | Shiying ZHAN, Dongxu YU, Nan CHEN, Fei DU. Advances of aqueous batteries with non-metallic cation charge carriers [J]. Energy Storage Science and Technology, 2021, 10(6): 2144-2155. |
[15] | Wenchao LIAN, Libin LEI, Bo LIANG, Chao WANG, Lei WEI, Zhipeng TIAN, Jianping LIU, Huazheng YANG, Jiajian LIANG, Tao SHI. Utilization and synthesis of ammonia in proton-conducting solid oxide electrochemical devices [J]. Energy Storage Science and Technology, 2021, 10(6): 1998-2007. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||