Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (2): 442-466.doi: 10.19799/j.cnki.2095-4239.2021.0477
• Energy Storage Materials and Devices • Previous Articles Next Articles
Linhan XIE1, Wanzhong LI1, Qianqian ZHANG1(), Gaoping CAO2, Jingyi QIU2, Hai MING2, Wei FENG3()
Received:
2021-09-13
Revised:
2021-09-29
Online:
2022-02-05
Published:
2022-02-08
Contact:
Linhan XIE,Qianqian ZHANG,Wei FENG
E-mail:zhangqianqian@bjut.edu.cn;weifeng@tju.edu.cn
CLC Number:
Linhan XIE, Wanzhong LI, Qianqian ZHANG, Gaoping CAO, Jingyi QIU, Hai MING, Wei FENG. Research advances in plant-power generation technology[J]. Energy Storage Science and Technology, 2022, 11(2): 442-466.
Fig. 4
Influence of different plants on power generation performance of copper-zinc primary batteries; evolutions of load voltage (a) and load power (b) with time in electrochemical cell with 1 Ω load resistance and a zinc-copper electrode number ratio of 2∶1; Evolutions of open circuit voltage (c) and output power (d) with time in electrochemical cell no load resistance and a zinc-copper electrode number ratio of 1∶1 on third day. Copyright ? 2020 Springer"
Fig. 8
Schematic diagram and performance diagram of bionic temperature-controlled nanochannel concentration difference battery based on MMT; (a) Schematic diagram of nanochannel concentration difference battery; (b) Volt-ampere characteristic curve under 1000 times salinity gradient;(c) Change of short-circuit current under temperature cycle conversion; (d) Output power density under different temperature and external resistance. Copyright ? 2020 Elsevier"
Table 1
Summary of power generation performance parameters of concentration differential batteries based on ion-selective nanochannel"
二维纳米流体通道 | 膜厚度/μm | 浓度梯度(倍数) | 最大功率密度/(W/m2) | 最大能量转换效率 | 参考文献 |
---|---|---|---|---|---|
超薄氮化碳膜 | 0.25 | 1000 | 0.21 | — | [ |
二氧化硅膜 | 140 | 1000 | 7.70 | 31.0% | [ |
异号电荷GO膜对 | 10 | 50 | 0.77 | 36.6% | [ |
阳离子插层改性GO膜 | — | 1000 | 38.00 | — | [ |
SPEEK膜 | 27 | 50 | 5.80 | — | [ |
SNF/AAO复合膜 | 65 | 50 | 2.86 | 27.3% | [ |
SPEEK/AAO复合膜 | 6.5 | 50 | 4.80 | — | [ |
Mxene/ANF复合膜 | 4.5 | 50 | 3.70 | 35.0% | [ |
蒙脱土膜 | 70 | 1000 | 0.15 | — | [ |
离子二极管膜 | — | 50 | 3.46 | 37.3% | [ |
Fig. 9
Process of charging, electron migration and medium transport in bio-photoelectric cells;(a) Photosynthetic cells produce high-energy electrons (e-) through photosystems I and II (PSI, PSII), and some electrons are released into external environment through external electrical activity of cell to reduce carriers(E→E-); (b) ) In power delivery device, reduced charged carriers (E-) are consumed where electrons are in contact with anode, generating current. Protons (H+) diffuse to cathode and produce water under catalysis, while electrons reach cathode through an external circuit. (Copyright ? 2018 Nature)"
Fig. 13
Schematic diagram of working principle of plant microbial fuel cell; (a) Schematic diagram of battery installation; (b) Voltage record every hour in a week (Copyright ? 2008 Springer); (c) Schematic diagram ofrice-microbial fuel cell under different conditions; (d) Output power density of microbial fuel cell in repeated experiments (Copyright ? 2008 American Chemical Society)"
Table 2
Summary of plant microbial fuel cell power generation performance parameters"
植物/培养基底 | 电子受体 | 最大功率密度/(mW/m2) | 最大输出电压/mV | 平均电流密度/(mA/m2) | 参考文献 |
---|---|---|---|---|---|
水稻/土壤 | 氧气 | 6.00 | 129 | — | [ |
水稻/土壤 | 铁氰化物 | 33.00 | — | 101~139 | [ |
水稻/蛭石 | 铁氰化物 | 29.00 | — | 35~53 | [ |
水稻/石墨 | 铁氰化物 | 17.90 | — | — | [ |
水甜茅/石墨 | 氧气 | 67.00 | 253 | — | [ |
大米草/石墨 | 氧气 | 79.00 | — | 89~193 | [ |
大米草/石墨 | 铁氰化物 | 100.00 | — | 111~279 | [ |
野古草/石墨 | 铁氰化物 | 22.00 | — | 12~31 | [ |
芦苇/石墨 | 氧气 | 26.78 | 320 | 19~53 | [ |
Fig. 18
Schematic diagram, performance diagram and working principle diagram of triboelectric nanogenerator. (a) Photograph of a completely biodegradable triboelectric nanogenerator; Open circuit voltage (b) and short-circuit current (c) generated by water droplets perturbing plants; (d) Water droplets perturbating leaves in four stages; (e) Schematic diagram of working mechanism of the triboelectric nanogenerator. Copyright ? 2020 American Chemical Society"
Fig. 19
schematic diagram of triboelectric nanogenerator and structure diagram of hosta leaf; (a) Schematic diagram of natural blade triboelectric nanogenerator; (b) Photo of hosta leaf and triboelectric nanogenerator assembled with polymethyl methacrylate; (c) Cross section of hosta leaf; (d) Irregular surface of hairpin leaves. Copyright ? 2018 Wiley-VCH"
1 | BALAT M. Status of fossil energy resources: a global perspective[J]. Energy Sources, Part B: Economics, Planning, and Policy, 2007, 2(1): 31-47. |
2 | ZOU C N, ZHAO Q, ZHANG G S, et al. Energy revolution: from a fossil energy era to a new energy era[J]. Natural Gas Industry B, 2016, 3(1): 1-11. |
3 | BARNES D F, FLOOR W M. Rural energy in developing countries: a challenge for economic development[J]. Annual Review of Energy and the Environment, 1996, 21(1): 497-530. |
4 | KAMPA M, CASTANAS E. Human health effects of air pollution[J]. Environmental Pollution, 2008, 151(2): 362-367. |
5 | NEWBERY D M. Acid rain[J]. Economic Policy, 1990, 5(11): 297-346. |
6 | AGGARWAL A, KUMARI R, MEHLA N, et al. Depletion of the ozone layer and its consequences: a review[J]. American Journal of Plant Sciences, 2013, 4(10): 1990. |
7 | TITUS J G. Greenhouse effect, sea level rise, and coastal zone management[J]. Coastal Management, 1986, 14(3): 147-171. |
8 | 周广胜. 气候变化对中国农业生产影响研究展望[J]. 气象与环境科学, 2015, 38(1): 80-94. |
ZHOU G S. Research prospect on impact of climate change on agricultural production in China[J]. Meteorological and Environmental Sciences, 2015, 38(1): 80-94. | |
9 | CAMPOS A, FERNANDES C. The geopolitics of energy[J]. Geopolitics of Energy and Energy Security, 2017, 24: 23-40. |
10 | ILHAM N I, HASANUZZAMAN M, MAMUN M A A. World energy policies[M]// Energy for Sustainable Development. Academic Press, 2020: 179-198. |
11 | PAZHERI F R, OTHMAN M F, MALIK N H. A review on global renewable electricity scenario[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 835-845. |
12 | KUMAR S, KATORIA D, SEHGAL D. Environment impact assessment of thermal power plant for sustainable development[J]. International Journal of Environmental Engineering and Management, 2013, 4(6): 567-572. |
13 | LAKATOS L, HEVESSY G, KOVÁCS J. Advantages and disadvantages of solar energy and wind-power utilization[J]. World Futures, 2011, 67(6): 395-408. |
14 | SCHERTL P, BRAUN H P. Respiratory electron transfer pathways in plant mitochondria[J]. Frontiers in Plant Science, 2014, 5: 163. |
15 | LEIBL W, MATHIS P. Electron transfer in photosynthesis[J]. Series on Photoconversion of Solar Energy, 2004, 2: 117. |
16 | MIYASAKA T, WATANABE T, FUJISHIMA A, et al. Highly efficient quantum conversion at chlorophyll a-lecithin mixed monolayer coated electrodes[J]. Nature, 1979, 277(5698): 638-640. |
17 | 秦淑琪, 宋玉民, 王文库, 等. 水果电池的研究[J]. 甘肃农业, 2006(5): 177-177. |
QING S Q, SONG Y M, WANG W K, et al. Research on fruit batteries[J]. Gansu Agriculture, 2006(5): 177-177. | |
18 | GOLBERG A, RABINOWITCH H D, RUBINSKY B. Zn/Cu-vegetative batteries, bioelectrical characterizations, and primary cost analyses[J]. Journal of Renewable and Sustainable Energy, 2010, 2(3): 033103. |
19 | MIR L M. Therapeutic perspectives of in vivo cell electropermeabilization[J]. BioElectrochEmistry, 2001, 53(1): 1-10. |
20 | WEAVER J C. Electroporation of cells and tissues[J]. IEEE Transactions on Plasma Science, 2000, 28(1): 24-33. |
21 | KUMARA K S J, WIJESUNDERA R P, JAYASURIYA K D. Plantain pith battery powered lighting system[C]// Proceedings of the Technical Sessions, 2015, 31: 29-37. |
22 | KHAN K A, HASSAN L, OBAYDULLAH A K M, et al. Bioelectricity: a new approach to provide the electrical power from vegetative and fruits at off-grid region[J]. Microsystem Technologies, 2020, 26(10): 3161-3172. |
23 | TALAI S M, SIAGI Z O, KIMUTAI S K, et al. Comparative energy generation of Irish-potato, tomato and pineapple ZN/CU vegetative batteries[J]. Research Journal of Applied Sciences, Engineering and Technology, 2014, 8(1): 9-19. |
24 | CHANDNA R, AZOOZ M M, AHMAD P. Recent advances of metabolomics to reveal plant response during salt stress[J]. Salt Stress in Plants, 2013: 1-14. |
25 | GAO J, FENG Y P, GUO W, et al. Nanofluidics in two-dimensional layered materials: inspirations from nature[J]. Chemical Society Reviews, 2017, 46(17): 5400-5424. |
26 | 王亚, 王海. 利用具有离子选择性的纳米通道实现浓度梯度差发电[J]. 首都师范大学学报(自然科学版), 2018, 39(6): 24-29. |
WANG Y, WANG H. Power generation from concentration gradient using ion-selective nanochannels[J]. Journal of Capital Normal University (Natural Science Edition), 2018, 39(6): 24-29. | |
27 | XIN W W, ZHANG Z, HUANG X D, et al. High-performance silk-based hybrid membranes employed for osmotic energy conversion[J]. Nature Communications, 2019, 10: 3876. |
28 | ZHANG Z, YANG S, ZHANG P P, et al. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators[J]. Nature Communications, 2019, 10: 2920. |
29 | BOCQUET L, CHARLAIX E. Nanofluidics, from bulk to interfaces[J]. Chemical Society Reviews, 2010, 39(3): 1073-1095. |
30 | KIM D K, DUAN C, CHEN Y F, et al. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels[J]. Microfluidics and Nanofluidics, 2010, 9(6): 1215-1224. |
31 | GHANBARI H, ESFANDIAR A. Ion transport through graphene oxide fibers as promising candidate for blue energy harvesting[J]. Carbon, 2020, 165: 267-274. |
32 | ZHAO Y, WANG J, KONG X Y, et al. Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion[J]. National Science Review, 2020, 7(8): 1349-1359. |
33 | WU C R, XIAO T L, TANG J D, et al. Biomimetic temperature-gated 2D cationic nanochannels for controllable osmotic power harvesting[J]. Nano Energy, 2020, 76: 105113. |
34 | XIAO K, GIUSTO P, WEN L P, et al. Nanofluidic ion transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes[J]. Angewandte Chemie International Edition, 2018, 57(32): 10123-10126. |
35 | JI J Z, KANG Q, ZHOU Y, et al. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs[J]. Advanced Functional Materials, 2017, 27(2): 1603623. |
36 | HOU S H, ZHANG Q R, ZHANG Z, et al. Charged porous asymmetric membrane for enhancing salinity gradient energy conversion[J]. Nano Energy, 2021, 79: 105509. |
37 | GAO J, GUO W, FENG D, et al. High-performance ionic diode membrane for salinity gradient power generation[J]. Journal of the American Chemical Society, 2014, 136(35): 12265-12272. |
38 | GOVINDJEE G, WHITMARSH J. Introduction to photosynthesis: energy conversion by plants and bacteria[M]// Photosynthesis, 1982: 1-16. |
39 | DE CAPRARIIS B, DE FILIPPIS P, DI BATTISTA A, et al. Exoelectrogenic activity of a green microalgae, Chlorella vulgaris, in a bio-photovoltaic cells (BPVS)[J]. Chemical Engineering Transactions, 2014, 38: 523-528. |
40 | SAAR K L, BOMBELLI P, LEA-SMITH D J, et al. Enhancing power density of biophotovoltaics by decoupling storage and power delivery[J]. Nature Energy, 2018, 3(1): 75-81. |
41 | SAWA M, FANTUZZI A, BOMBELLI P, et al. Electricity generation from digitally printed cyanobacteria[J]. Nature Communications, 2017, 8(1): 1-10. |
42 | BOMBELLI P, MÜLLER T, HERLING T W, et al. A high power-density, mediator-free, microfluidic biophotovoltaic device for cyanobacterial cells[J]. Advanced Energy Materials, 2015, 5(2): 1401299. |
43 | BINDER A. Respiration and photosynthesis in energy-transducing membranes of cyanobacteria[J]. Journal of Bioenergetics and Biomembranes, 1982, 14(5): 271-286. |
44 | NG F L, PHANG S M, PERIASAMY V, et al. Algal biophotovoltaic (BPV) device for generation of bioelectricity using Synechococcus elongatus (Cyanophyta)[J]. Journal of Applied Phycology, 2018, 30(6): 2981-2988. |
45 | ZHU H W, MENG H K, ZHANG W, et al. Development of a longevous two-species biophotovoltaics with constrained electron flow[J]. Nature Communications, 2019, 10: 4282. |
46 | THONG C H, PHANG S M, NG F L, et al. Effect of different irradiance levels on bioelectricity generation from algal biophotovoltaic (BPV) devices[J]. Energy Science & Engineering, 2019, 7(5): 2086-2097. |
47 | SERVICE R F. Is it time to shoot for the sun?[J]. Science, 2005, 309(5734): 548-551. |
48 | GUL M M, AHMAD K S. Bioelectrochemical systems: Sustainable bio-energy powerhouses[J]. Biosensors and Bioelectronics, 2019, 142: 111576. |
49 | NEILSON A H, LEWIN R A. The uptake and utilization of organic carbon by algae: An essay in comparative biochemistry[J]. Phycologia, 1974, 13(3): 227-264. |
50 | KIM B H, CHANG I S, GADD G M. Challenges in microbial fuel cell development and operation[J]. Applied Microbiology and Biotechnology, 2007, 76(3): 485-494. |
51 | SMUCKER A J M. Carbon utilization and losses by plant root systems[J]. Roots, Nutrient and Water Influx, and Plant Growth, 1984, 49: 27-46. |
52 | 宋天顺, 晏再生, 胡颖, 等. 沉积物微生物燃料电池修复水体沉积物研究进展[J]. 现代化工, 2009, 29(11): 15-19. |
SONG T S, YAN Z S, HU Y, et al. Progress in aquatic sediment remediation by sediment microbial fuel cell[J]. Modern Chemical Industry, 2009, 29(11): 15-19. | |
53 | KAKU N, YONEZAWA N, KODAMA Y, et al. Plant/microbe cooperation for electricity generation in a rice paddy field[J]. Applied Microbiology and Biotechnology, 2008, 79(1): 43-49. |
54 | SCHAMPHELAIRE L D, BOSSCHE L V, DANG H S, et al. Microbial fuel cells generating electricity from rhizodeposits of rice plants[J]. Environmental Science & Technology, 2008, 42(8): 3053-3058. |
55 | STRIK D P, HAMELERS H V M, SNEL J F H, et al. Green electricity production with living plants and bacteria in a fuel cell[J]. International Journal of Energy Research, 2008, 32(9): 870-876. |
56 | 许鹏, 许丹, 张义, 等. 植物型微生物燃料电池研究进展[J]. 工业安全与环保, 2014(9): 33-35. |
XU P, XU D, ZHANG Y, et al. Research progress of plant type microbial fuel cell[J]. Industrial Safety and Environmental Protection, 2014(9): 33-35. | |
57 | CASTRESANA P A, MARTINEZ S M, FREEMAN E, et al. Electricity generation from moss with light-driven microbial fuel cells[J]. Electrochimica Acta, 2019, 298: 934-942. |
58 | IEROPOULOS I, WINFIELD J, GREENMAN J. Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells[J]. Bioresource Technology, 2010, 101(10): 3520-3525. |
59 | SALINAS-JUÁREZ M G, ROQUERO P, DURÁN-DOMÍNGUEZ-DE-BAZÚA M D C. Plant and microorganisms support media for electricity generation in biological fuel cells with living hydrophytes[J]. Bioelectrochemistry, 2016, 112: 145-152. |
60 | TIMMERS R A, STRIK D P, HAMELERS H V M, et al. Long-term performance of a plant microbial fuel cell with Spartina anglica[J]. Applied Microbiology and Biotechnology, 2010, 86(3): 973-981. |
61 | LU Z H, YIN D, CHEN P, et al. Power-generating trees: Direct bioelectricity production from plants with microbial fuel cells[J]. Applied Energy, 2020, 268: 115040. |
62 | POWELL R J, WHITE R, HILL R T. Merging metabolism and power: development of a novel photobioelectric device driven by photosynthesis and respiration[J]. Plos One, 2014, 9(1): e86518. |
63 | 张廷滔, 张礼霞, 高平, 等. 混合菌群生物燃料电池的产电机理与特性[J]. 应用与环境生物学报, 2012(3): 465-470. |
ZHANG T T, ZHANG L X, GAO P, et al. Mechanism and characteristics of electricity generation in microbial fuel cells catalyzed by mixed culture[J]. Chinese Journal of Applied and Environmental Biology, 2012(3): 465-470. | |
64 | LIU Y, DING M Z, LING W, et al. A three-species microbial consortium for power generation[J]. Energy & Environmental Science, 2017, 10(7): 1600-1609. |
65 | HELDER M, STRIK D, HAMELERS H V M, et al. Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using Spartina anglica, Arundinella anomala and Arundo donax[J]. Bioresource Technology, 2010, 101(10): 3541-3547. |
66 | 付哲平, 李子健. 海泥细菌电池技术原理与特点及其应用前景分析研究——一种新型海洋可再生能源技术[J]. 海洋开发与管理, 2017, 34(3): 67-71. |
FU Z P, LI Z J. Principle and characteristic of technology and its application prospect of marine sediment microbial fuel cell[J]. Ocean Development and Management, 2017, 34(3): 67-71. | |
67 | LOGAN B E. Microbial fuel cells[M]. John Wiley & Sons, 2008. |
68 | PRAKASH O, MUNGRAY A, KAILASA S K, et al. Comparison of different electrode materials and modification for power enhancement in benthic microbial fuel cells (BMFCs)[J]. Process Safety and Environmental Protection, 2018, 117: 11-21. |
69 | FU Y B, XU Q, ZAI X R, et al. Low electrical potential anode modified with Fe/ferric oxide and its application in marine benthic microbial fuel cell with higher voltage and power output[J]. Applied Surface Science, 2014, 289: 472-477. |
70 | FU Y B, LIU Z H, SU G, et al. Modified carbon anode by MWCNTs/PANI used in marine sediment microbial fuel cell and its electrochemical performance[J]. Fuel Cells, 2016, 16(3): 377-383. |
71 | STRIK D P, TIMMERS R A, HELDER M, et al. Microbial solar cells: Applying photosynthetic and electrochemically active organisms[J]. Trends in Biotechnology, 2011, 29(1): 41-49. |
72 | MOHAN S V, MOHANAKRISHNA G, CHIRANJEEVI P. Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment[J]. Bioresource Technology, 2011, 102(14): 7036-7042. |
73 | 毛慧, 钱伟东. 水稻集中育供秧的现状与探索[J]. 农业与技术, 2018, 38(15): 167-168. |
MAO H, QIAN W D. Current situation and exploration of centralized breeding and supply of rice seedlings[J]. Agriculture and Technology, 2018, 38(15): 167-168. | |
74 | ORMEROD R M. Solid oxide fuel cells[J]. Chemical Society Reviews, 2003, 32(1): 17-28. |
75 | AELTERMAN P, RABAEY K, CLAUWAERT P, et al. Microbial fuel cells for wastewater treatment[J]. Water Science and Technology, 2006, 54(8): 9-15. |
76 | MAAMER B, BOUGHAMOURA A, FATH EL-BAB A M R, et al. A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes[J]. Energy Conversion and Management, 2019, 199: 111973. |
77 | ZI Y L, GUO H Y, WEN Z, et al. Harvesting low-frequency (<5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator[J]. ACS Nano, 2016, 10(4): 4797-4805. |
78 | KNIGHT M R, SMITH S M, TREWAVAS A J. Wind-induced plant motion immediately increases cytosolic calcium[J]. Proceedings of the National Academy of Sciences, 1992, 89(11): 4967-4971. |
79 | POHANKA M. The piezoelectric biosensors: Principles and applications[J]. International Journal of Electrochemical Science, 2017, 12: 496-506. |
80 | PAN S H, ZHANG Z N. Fundamental theories and basic principles of triboelectric effect: a review[J]. Friction, 2019, 7(1): 2-17. |
81 | CHEN Y D, JIE Y, WANG J, et al. Triboelectrification on natural rose petal for harvesting environmental mechanical energy[J]. Nano Energy, 2018, 50: 441-447. |
82 | WU H, CHEN Z F, XU G Q, et al. Fully biodegradable water droplet energy harvester based on leaves of living plants[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56060-56067. |
83 | JIE Y, JIA X T, ZOU J D, et al. Natural leaf made triboelectric nanogenerator for harvesting environmental mechanical energy[J]. Advanced Energy Materials, 2018, 8(12): 1703133. |
84 | MEDER F, THIELEN M, MONDINI A, et al. Living plant-hybrid generators for multidirectional wind energy conversion[J]. Energy Technology, 2020, 8(7): 2000236. |
85 | YAN J, LIU M, JEONG Y G, et al. Performance enhancements in poly (vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting[J]. Nano Energy, 2019, 56: 662-692. |
86 | SLABOV V, KOPYL S, DOS SANTOS M P S, et al. Natural and eco-friendly materials for triboelectric energy harvesting[J]. Nano-Micro Letters, 2020, 12(1): 42. |
87 | 刘强, 许鑫华, 任光雷, 等. 酶生物燃料电池[J]. 化学进展, 2006, 18(11): 1530. |
LIU Q, XU X H, REN G L, et al. Enzymatic biofuel cells[J]. Progress in Chemistry, 2006, 18(11): 1530. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||