Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (2): 467-486.doi: 10.19799/j.cnki.2095-4239.2021.0483
• Energy Storage Materials and Devices • Previous Articles Next Articles
Xiaohan FENG1(), Jie SUN1,2(), Jianhao HE2, Yihua WEI2, Chenggang ZHOU1(), Ruimin SUN1()
Received:
2021-09-15
Revised:
2021-10-19
Online:
2022-02-05
Published:
2022-02-08
Contact:
Chenggang ZHOU,Ruimin SUN
E-mail:2215852440@qq.com;sunjie898@aliyun.com;cgzhou@cug.edu.cn;rmsun@cug.edu.cn
CLC Number:
Xiaohan FENG, Jie SUN, Jianhao HE, Yihua WEI, Chenggang ZHOU, Ruimin SUN. Research progress in LiFePO4 cathode material modification[J]. Energy Storage Science and Technology, 2022, 11(2): 467-486.
Fig. 3
(a)~(c) CV curves of LiFePO4 under different scan rates of 1.4 mV/s, 2.8 mV/s, and 4.2 mV/s at temperature ranging from 253~313 K; (d)~(f) image plot of diffraction patterns for (111), (211), (020), (311), and (121) reflections during two CV cycles under different scan rates of 1.4 mV/s, 2.8 mV/s, and 4.2 mV/s at a temperature of 293 K, corresponding current curves are plotted to right; LFP represent for LiFePO4; (g)~(i) selected individual diffraction patterns for two CV cycles at 1.4 mV/s, 2.8 mV/s, and 4.2 mV/s[14]"
Fig. 5
(a) First charge/discharge curves of Cl-doped LFP/C and LFP/C electrodes at 0.1 C; discharge curves of different current density: (b) LFP/C; (c) Cl-doped LFP/C; (d) rate ability of LFP/C and Cl-doped LFP/C; (e) cycling performance of Cl-doped LFP/C and LFP/C at 0.1 C and 10 C, respectively[28]; (f) initial charge/discharge curves of undoped and F-doped LiFePO4/C samples at 0.1 C rate; (g) initial charge/discharge curves of LiFePO4/C and LiFePO4-xFx/C (x = 0.15) samples at 0.1C rate, (h) rate and cycle performances of undoped and F-doped LiFePO4/C samples; i) cycle performances of LiFePO4-xFx/C (x = 0.15) sample at high-rate 20 C, 30 C[29]"
Fig. 6
(a) Schematic illustration of te synthesis process of MT-LFP materials; SEM images of the as-prepared undoped LFP (b) and (c); MT-LFP (d) and (e); Nitrogen adsorption (closed symbols)-desorption (open symbols) isotherms (f); pore diameter distribution curves (g) of as-prepared undoped LFP and MT-LFP samples; (h) charge-discharge curves of LFP and (i) MT-LFP at different rates; (j) rate capabilities of LFP and MT-LFP at various rates; cycling performance of LFP and MT-LFP cathodes at a charge/discharge rate of 0.5 C (k), 1 C (l), and 5C (m)[30]"
Table 1
A sum up of electrochemical performance of LiFePO4 modified by elemental doping"
掺杂元素 | 掺杂位点 | 最佳掺杂量 | 电化学性能(初始容量;循环性能) |
---|---|---|---|
Na[ | Li位 | Li0.99Na0.01FePO4 | 80.9 mA·h/g(10 C);86.7%(10 C,500圈) |
Nb[ | Li位 | Li0.95Nb0.01FePO4 | 96.7 mA·h/g(10 C);96%(10 C,200圈) |
Al[ | Li位 | Li0.97Al0.01FePO4 | 95 mA·h/g(0.2 C) |
Mn[ | Fe位 | LiFe0.77Mn0.23PO4 | 80.9 mA·h/g(1 C);84%(1 C,100圈) |
Mo[ | Fe位 | LiFe0.98Mn0.02PO4 | 141.5 mA·h/g(0.1 C);98%(0.1 C,100圈) |
V[ | Fe位 | LiFe0.95V0.05PO4 | 119 mA·h/g(1500 mA/g);98%(1500 mA/g,100圈) |
Ti[ | Fe位 | LiFe0.98Ti0.02PO4 | 160 mA·h/g(0.2 C);98%(0.2 C,50圈) |
S[ | O位 | LiFePO3.78S0.22 | 112.7 mA·h/g(10 C);98%(0.2 C,50圈) |
Cl[ | O位 | LiFePO3.98Cl0.02 | 164.1 mA·h/g(0.1 C);105.3 mA·h/g(10 C);91.5%(10 C,500圈) |
F[ | O位 | LiFePO3.85F0.15 | 165.7 mA·h/g(0.1 C);115.7 mA·h/g(30 C);92.8%(30 C,50圈) |
Mg&Ti[ | Mg(Fe位) Ti(Fe位) | LiFe0.985Mg0.005Ti0.01PO4 | 161.5 mA·h/g(0.2 C);139.8 mA·h/g(5 C);92.9%(5 C,100圈) |
Zr&Co[ | Zr(Li位) Co(Fe位) | Li0.99Zr0.0025Fe0.98Co0.02PO4 | 139.9 mA·h/g(0.1 C);85%(0.1 C,50圈) |
Ni&Mn[ | Ni(Fe位) Mn(Fe位) | LiFe0.95Ni0.02Mn0.03PO4/C | 164.3 mA·h/g(0.1 C);146 mA·h/g(1 C);98.7%(1 C,100圈) |
V&F[ | V(Fe位) F(O位) | LiFe0.96V0.02PO3.97F0.06 | 165.7 mA·h/g(0.1 C);154.9 mA·h/g(1 C);95.7%(1 C,500圈) |
V&Y[ | Y(Fe位) F(O位) | LiFe0.95V0.033PO3.95F0.1 | 148.6 mA·h/g(5 C);96.88%(5 C,700圈) |
Ni&Mn&Co[ | Ni(Fe位) Mn(Fe位) Co(Fe位) | LiFe0.84Ni0.06Co0.06Mn0.04PO4 | 160.1 mA·h/g(0.1 C);110.8 mA·h/g(10 C);98.3%(10 C,50圈) |
Fig. 7
Schematic illustration of synthesis and structure of LFP/graphite composite. (a) synthesis of LFP/graphite composite by intercalating graphite with FeCl3 followed by formation of LFP within the graphite layers; (b) schematics of LFP/graphite based cathode and a commercial LFP cathode, continuous conductive network provided by graphite confers better performance on LFP/graphite electrode; structure and morphology of LFP/graphite composite: (c), (d) SEM and EDS mapping, (e), (f) SEM images, and (g), (h) TEM images of LFP/graphite composite; (i) inset in panel g is SAED of a LFP particle; (j) SEM and (k) TEM images of porous graphite particle after etching away LFP particles from LFP/graphite composite[43]"
Fig. 9
(a) Schematic of fabrication process of N-Co/N-Li2O composites; (b) initial charge potential profiles of electrodes made with various Co/Li2O nanocomposites: M-Co/N-Li2O composite, SM-Co/N-Li2O composite and N-Co/N-Li2O composite; (c) charge/discharge potential profiles of N-Co/N-Li2O electrode after first charge process; (d) initial charge potential profiles of LiFePO4 electrodes with different amounts of N-Co/N-Li2O additive in half-cell configurations; initial charge/ discharge potential profiles (e) and cycling performance (f) of LiFePO4/ graphite full cells with and without N-Co/N-Li2O additive[72]"
1 | LI H, PENG L, WU D B, et al. Ultrahigh-capacity and fire-resistant LiFePO4-based composite cathodes for advanced lithium-ion batteries[J]. Advanced Energy Materials, 2019, 9(10): 1802930. |
2 | 刘仕强, 王芳, 马天翼, 等. 磷酸铁锂动力电池备电工况寿命试验研究及分析[J]. 储能科学与技术, 2020, 9(2): 638-644. |
LIU S Q, WANG F, MA T J, et al. Cycle life test and analysis of lithium iron phosphate based traction batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 638-644. | |
3 | DAI Y, XU Z D, HUA D, et al. Theoretical-molar Fe3+ recovering lithium from spent LiFePO4 batteries: An acid-free, efficient, and selective process[J]. Journal of Hazardous Materials, 2020, 396: 122707. |
4 | 田柳文, 于华, 章文峰. 锂离子电池的明星材料磷酸铁锂: 基本性能、优化改性及未来展望[J]. 材料导报, 2019, 33(11): 3561-3579. |
TIAN L W, YU H, ZHANG W F. The star material of Lithium ion batteries, LiFePO4 optimized modification and future prospects[J]. Materials Reports, 2019, 33(11): 3561-3579. | |
5 | 范茂松, 金翼, 杨凯, 等. 退役LiFePO4电池性能测评及储能应用[J]. 储能科学与技术, 2019, 8(2): 408-414. |
FAN M S, JIN Y, YANG K, et al. Testing of the performance and energy-storage applied for retired LiFePO4 batteries[J]. Energy Storage Science and Technology, 2019, 8(2): 408-414. | |
6 | 李雨, 赵慧春, 白莹, 等. 高能量密度层状富锂锰基正极材料的改性研究进展[J]. 储能科学与技术, 2018, 7(3): 395-403. |
LI Y, ZHAO H C, BAI Y, et al. Progress in the modification of lithium-rich manganese-based layered cathode materials[J]. Energy Storage Science and Technology, 2019, 8(2): 408-414. | |
7 | 王栋, 邓莉莉, 杜光超, 等. 锂离子电池正极材料掺杂和表面包覆研究综述[J]. 储能科学与技术, 2019, 8(1): 43-48. |
WANG D, DEN L L, DU G C, et al. Review of doping and surface coating of cathode materials for lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(1): 43-48. | |
8 | HUANG Y Y, ZHU Y C, FU H Y, et al. Mg-pillared LiCoO2: Towards stable cycling at 4.6 V[J]. Angewandte Chemie International Ed in English, 2021, 60(9): 4682-4688. |
9 | KOYAMA Y, UYAMA T, ORIKASA Y, et al. Hidden two-step phase transition and competing reaction pathways in LiFePO4[J]. Chemistry of Materials, 2017, 29(7): 2855-2863. |
10 | WANG T Z, WU X G, XU S B, et al. Performance of plug-in hybrid electric vehicle under low temperature condition and economy analysis of battery pre-heating[J]. Journal of Power Sources, 2018, 401(8): 245-254. |
11 | NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264. |
12 | JI Y, ZHANG Y C, WANG C Y. Li-ion cell operation at low temperatures[J]. Journal of The Electrochemical Society, 2013, 160(4): A636-A649. |
13 | MA S, JIANG M D, TAO P, et al. Temperature effect and thermal impact in lithium-ion batteries: A review[J]. Progress in Natural Science: Materials International, 2018, 28(6): 653-666. |
14 | YAN M Y, ZHANG G B, WEI Q L, et al. In operando observation of temperature-dependent phase evolution in lithium-incorporation olivine cathode[J]. Nano Energy, 2016, 22(1): 406-413. |
15 | WU G, LIU N, GAO X G, et al. A hydrothermally synthesized LiFePO4/C composite with superior low-temperature performance and cycle life[J]. Applied Surface Science, 2018, 435(11): 1329-1336. |
16 | CHUNG S Y, BLOKING J T, CHIANG Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nature Materials, 2002, 1(2): 123-128. |
17 | LIU Y, QIN W C, ZHANG D K, et al. Effect of Na+ in situ doping on LiFePO4/C cathode material for lithium-ion batteries[J]. Progress in Natural Science: Materials International, 2021, 31(1): 14-18. |
18 | JOHNSON I D, BLAGOVIDOVA E, DINGWALL P A, et al. High power Nb-doped LiFePO4 Li-ion battery cathodes; pilot-scale synthesis and electrochemical properties[J]. Journal of Power Sources, 2016, 326(6): 476-481. |
19 | KULKA A, BRAUN A, HUANG T W, et al. Evidence for Al doping in lithium sublattice of LiFePO4[J]. Solid State Ion, 2015, 270(12): 33-38. |
20 | SŁAWIŃSKI W A, PLAYFORD H Y, HULL S, et al. Neutron pair distribution function study of FePO4 and LiFePO4[J]. Chemistry of Materials, 2019, 31(14): 5024-5034. |
21 | GOONETILLEKE D, FAULKNER T, PETERSON V K, et al. Structural evidence for Mg-doped LiFePO4 electrode polarisation in commercial Li-ion batteries[J]. Journal of Power Sources, 2018, 394(5): 1-8. |
22 | LEE H, KIM S, PARMAR N S, et al. Carbon-free Mn-doped LiFePO4 cathode for highly transparent thin-film batteries[J]. Journal of Power Sources, 2019, 434(10): 1-8. |
23 | GUO X P, WANG M, HUANG X L, et al. Direct evidence of antisite defects in LiFe0.5Mn0.5PO4via atomic-level HAADF-EELS[J]. Journal of Materials Chemistry A, 2013, 1(31): 8775-8781. |
24 | ZHANG Y, SHAO Z C, ZHANG Y. Preparation of Mo-doping LiFePO4/C by carbon reduction method[J]. Materials and Manufacturing Processes, 2021, 36(4): 419-425. |
25 | JOHNSON I D, LÜBKE M, WU O Y, et al. Pilot-scale continuous synthesis of a vanadium-doped LiFePO4/C nanocomposite high-rate cathodes for lithium-ion batteries[J]. Journal of Power Sources, 2016, 302(10): 410-418. |
26 | KIM S, MATHEW V, KANG J, et al. High rate capability of LiFePO4 cathodes doped with a high amount of Ti[J]. Ceramics International, 2016, 42(6): 7230-7236. |
27 | OKADA K, KIMURA I, MACHIDA K. High rate capability by sulfur-doping into LiFePO4 matrix[J]. RSC Advances, 2018, 8(11): 5848-5853. |
28 | LIU H, LUO S H, YAN S X, et al. A novel and low-cost iron source for synthesizing Cl-doped LiFePO4/C cathode materials for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2019, 850: 113434. |
29 | GAO C, ZHOU J, LIU G Z, et al. Synthesis of F-doped LiFePO4/C cathode materials for high performance lithium-ion batteries using co-precipitation method with hydrofluoric acid source[J]. Journal of Alloys and Compounds, 2017, 727(8): 501-513. |
30 | TU J G, WU K, TANG H, et al. Mg-Ti co-doping behavior of porous LiFePO4 microspheres for high-rate lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(32): 17021-17028. |
31 | GAO L B, XU Z R, ZHANG S. The Co-doping effects of Zr and Co on structure and electrochemical properties of LiFePO4 cathode materials[J]. Journal of Alloys and Compounds, 2018, 739: 529-535. |
32 | YUAN H, WANG X Y, WU Q, et al. Effects of Ni and Mn doping on physicochemical and electrochemical performances of LiFePO4/C[J]. Journal of Alloys and Compounds, 2016, 675: 187-194. |
33 | LI X T, YU L N, CUI Y H, et al. Enhanced properties of LiFePO4/C cathode materials Co-doped with V and F ions via high-temperature ball milling route[J]. International Journal of Hydrogen Energy, 2019, 44(50): 27204-27213. |
34 | WANG H Q, LAI A J, HUANG D Q, et al. Y-F co-doping behavior of LiFePO4/C nanocomposites for high-rate lithium-ion batteries[J]. New Journal of Chemistry, 2021, 45(12): 5695-5703. |
35 | LIU W M, HUANG Q Z, HU G R. A novel preparation route for multi-doped LiFePO4/C from spent electroless nickel plating solution[J]. Journal of Alloys and Compounds, 2015, 632: 185-189. |
36 | ZHANG Z F, WU Z J, SU S H, et al. Sustainable preparation of Li(FeM)PO4/C from converter sludge and its electrochemical performance as a cathode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2013, 574: 136-141. |
37 | MENG Y S, LI Y Z, XIA J, et al. F-doped LiFePO4@N/B/F-doped carbon as high performance cathode materials for Li-ion batteries[J]. Applied Surface Science, 2019, 476: 761-768. |
38 | LIU Y L, WANG J J, LIU J, et al. Origin of phase inhomogeneity in lithium iron phosphate during carbon coating[J]. Nano Energy, 2018, 45: 52-60. |
39 | SONG J J, SUN B, LIU H, et al. Enhancement of the rate capability of LiFePO4 by a new highly graphitic carbon coating method[J]. ACS Appl Mater Interfaces, 2016, 8(24): 15225-15231. |
40 | PARK S, OH J, KIM J M, et al. Facile preparation of cellulose nanofiber derived carbon and reduced graphene oxide co-supported LiFePO4 nanocomposite as enhanced cathode material for lithium-ion battery[J]. Electrochimica Acta, 2020, 354: 136707. |
41 | WANG P, ZHANG G, LI Z C, et al. Improved electrochemical performance of LiFePO4@N-doped carbon nanocomposites using polybenzoxazine as nitrogen and carbon sources[J]. ACS Applied Materials & Interfaces, 2016, 8(40): 26908-26915. |
42 | WANG X F, FENG Z J, HOU X L, et al. Fluorine doped carbon coating of LiFePO4 as a cathode material for lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 379: 122371. |
43 | LI F, TAO R, TAN X Y, et al. Graphite-embedded lithium iron phosphate for high-power-energy cathodes[J]. Nano Letters, 2021, 21(6): 2572-2579. |
44 | LUO W-B, CHOU S-L, ZHAI Y-C, et al. Self-assembled graphene and LiFePO4 composites with superior high rate capability for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(14): 4927-4931. |
45 | WANG B, AL ABDULLA W, WANG D, et al. A three-dimensional porous LiFePO4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries[J]. Energy & Environmental Science, 2015, 8(3): 869-875. |
46 | XU L T, LÜ W, SHI K, et al. Holey graphenes as the conductive additives for LiFePO4 batteries with an excellent rate performance[J]. Carbon, 2019, 149: 257-262. |
47 | FAN J M, CHEN J J, CHEN Y X, et al. Hierarchical structure LiFePO4@C synthesized by oleylamine-mediated method for low temperature applications[J]. Journal of Materials Chemistry A, 2014, 2(14): 4870-4873. |
48 | WU X L, GUO Y G, SU J, et al. Carbon-nanotube-decorated nano-LiFePO4@C cathode material with superior high-rate and low-temperature performances for lithium-ion batteries[J]. Advanced Energy Materials, 2013, 3(9): 1155-1160. |
49 | LU Z G, CHENG H, LO M F, et al. Pulsed laser deposition and electrochemical characterization of LiFePO4-Ag composite thin films[J]. Advanced Functional Materials, 2007, 17(18): 3885-3896. |
50 | ZHU M Y, CHENG L F, LIU Y, et al. LiFePO4/(C+Cu) composite with excellent cycling stability as lithium ion battery cathodes synthesized via a modified carbothermal reduction method[J]. Ceramics International, 2018, 44(11): 12106-12111. |
51 | LIN Y B, LIN Y, ZHOU T, et al. Enhanced electrochemical performances of LiFePO4/C by surface modification with Sn nanoparticles[J]. Journal of Power Sources, 2013, 226: 20-26. |
52 | ZIOLKOWSKA D, KORONA K P, HAMANKIEWICZ B, et al. The role of SnO2 surface coating on the electrochemical performance of LiFePO4 cathode materials[J]. Electrochimica Acta, 2013, 108: 532-539. |
53 | LIU S X, YIN H B, WANG H B, et al. Synthesis, characterization and electrochemical performances of MoO2 and carbon co-coated LiFePO4 cathode materials[J]. Ceramics International, 2014, 40(2): 3325-3331. |
54 | LIU S X, WANG H B. WO2 modified LiFePO4/C cathode materials with improved electrochemical performance synthesized by in-situ synthesis method[J]. Materials Letters, 2014, 122: 151-154. |
55 | ZHANG M, GARCIA-ARAEZ N, HECTOR A L, et al. A sol-gel route to titanium nitride conductive coatings on battery materials and performance of TiN-coated LiFePO4[J]. Journal of Materials Chemistry A, 2017, 5(5): 2251-2260. |
56 | LU J, PENG Q, WANG W Y, et al. Nanoscale coating of LiMO2 (M =Ni, Co, Mn) nanobelts with Li+-conductive Li2TiO3: Toward better rate capabilities for Li-ion batteries[J]. Journal of the American Chemical Society, 2013, 135(5): 1649-1652. |
57 | TANG H, XU J. Enhanced electrochemical performance of LiFePO4 coated with Li0.34La0.51TiO2.94 by rheological phase reaction method[J]. Materials Science and Engineering: B, 2013, 178(20): 1503-1508. |
58 | PARK K Y, PARK I, KIM H, et al. Lithium-excess olivine electrode for lithium rechargeable batteries[J]. Energy & Environmental Science, 2016, 9(9): 2902-2915. |
59 | CHIEN W C, JHANG J S, WU S H, et al. Preparation of LiFePO4/Li3V2(PO4)3/C composite cathode materials and their electrochemical performance analysis[J]. Journal of Alloys and Compounds, 2020, 847: 156447. |
60 | GUO Y, HUANG Y D, JIA D Z, et al. Preparation and electrochemical properties of high-capacity LiFePO4-Li3V2(PO4)3/C composite for lithium-ion batteries[J]. Journal of Power Sources, 2014, 246: 912-917. |
61 | ZHANG X P, GUO H J, LI X H, et al. Studies of fast-ion conducting Li3V2(PO4)3 coated LiFePO4via sol-gel method[J]. Solid State Ion, 2012, 212: 106-111. |
62 | ZHENG J C, LI X H, WANG Z X, et al. Novel synthesis of LiFePO4-Li3V2(PO4)3 composite cathode material by aqueous precipitation and lithiation[J]. Journal of Power Sources, 2010, 195(9): 2935-2938. |
63 | ZHONG S K, WU L, LIU J Q. Sol-gel synthesis and electrochemical properties of 9LiFePO4·Li3V2(PO4)3/C composite cathode material for lithium ion batteries[J]. Electrochimica Acta, 2012, 74: 8-15. |
64 | LIANG S Q, CAO X X, WANG Y P, et al. Uniform 8LiFePO4·Li3V2(PO4)3/C nanoflakes for high-performance Li-ion batteries[J]. Nano Energy, 2016, 22: 48-58. |
65 | IM J, HEO K, KANG S-W, et al. LiFePO4 synthesis using refined Li3PO4 from wastewater in Li-ion battery recycling process[J]. Journal of the Electrochemical Society, 2019, 166(15): A3861-A3868. |
66 | WANG X, WANG X Y, ZHANG R, et al. Hydrothermal preparation and performance of LiFePO4 by using Li3PO4 recovered from spent cathode scraps as Li source[J]. Waste Managment, 2018, 78: 208-216. |
67 | ZHAO S X, DING H, WANG Y C, et al. Improving rate performance of LiFePO4 cathode materials by hybrid coating of nano-Li3PO4 and carbon[J]. Journal of Alloys and Compounds, 2013, 566: 206-211. |
68 | SHU H B, CHEN M F, WEN F, et al. Li fast ion conductive La0.56Li0.33TiO3 inlaid LiFePO4/C microspheres with enhanced high-rate performance as cathode materials[J]. Electrochimica Acta, 2015, 152: 368-377. |
69 | SHU H B, CHEN M F, FU Y Q, et al. Improvement of electrochemical performance for spherical LiFePO4via hybrid coated with electron conductive carbon and fast Li ion conductive La0.56Li0.33TiO3[J]. Journal of Power Sources, 2014, 252: 73-78. |
70 | 赵鹤, 韩策, 程小露. 采用阳极预锂化技术的锂离子电池高倍率老化容量衰减机理研究[J]. 储能科学与技术, 2021, 10(2): 454-461. |
ZHAO H, HAN C, CHEN X L. Research on the capacity fading mechanism of high rate aged lithium-ion batteries with anode prelithiation treatment[J]. Energy Storage Science and Technology, 2021, 10(2): 454-461. | |
71 | DIAZ-LOPEZ M, CHATER P A, BORDET P, et al. Li2O: Li-Mn-O disordered rock-Salt nanocomposites as cathode prelithiation additives for high-energy density Li-ion batteries[J]. Advanced Energy Materials, 2020, 10(7): 1902788. |
72 | SUN Y M, LEE H-W, SEH Z W, et al. High-capacity battery cathode prelithiation to offset initial lithium loss[J]. Nature Energy, 2016, 1: 15008. |
73 | SUN Y, LEE H W, ZHENG G, et al. In situ chemical synthesis of lithium fluoride/metal nanocomposite for high capacity prelithiation of cathodes[J]. Nano Letters, 2016, 16(2): 1497-1501. |
74 | DU J M, WANG W Y, ENG A Y S, et al. Metal/LiF/Li2O nanocomposite for battery cathode prelithiation: trade-off between capacity and stability[J]. Nano Letters, 2020, 20(1): 546-552. |
75 | SUN Y M, LI Y B, SUN J, et al. Stabilized Li3N for efficient battery cathode prelithiation[J]. Energy Storage Materials, 2017, 6: 119-124. |
76 | ZHAN Y J, YU H L, BEN L B, et al. Using Li2S to compensate for the loss of active lithium in Li-ion batteries[J]. Electrochimica Acta, 2017, 255(9): 212-219. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Xiaosa ZHANG, Hongyuan WANG, Zhenbiao LI, Zhimei XIA. New process of sulfated roasting-water leaching for treating electrode material of spent lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2066-2074. |
[3] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[4] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[5] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[6] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[7] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[8] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[9] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[10] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[11] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[12] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[13] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[14] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[15] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||