Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (3): 792-807.doi: 10.19799/j.cnki.2095-4239.2022.0650
• Energy Storage Materials and Devices • Previous Articles Next Articles
Mai FENG1,2,3(), Nan CHEN1,2(), Renjie CHEN1,2
Received:
2022-11-04
Revised:
2022-12-07
Online:
2023-03-05
Published:
2023-04-14
Contact:
Nan CHEN
E-mail:1023869217@qq.com;chenn@bit.edu.cn
CLC Number:
Mai FENG, Nan CHEN, Renjie CHEN. Research progress of low-temperature electrolyte for lithium-ion battery[J]. Energy Storage Science and Technology, 2023, 12(3): 792-807.
Table 1
Comparison of properties of lithium salts"
Lithium salt | Characteristics | Usage and dosage | Stability on AI | Stability on Cu |
---|---|---|---|---|
LiPF6 | 1.空气中分解,放出PF5,产生白色烟雾; 2.在有机溶剂中分解温度80 ℃; 3.对水敏感,副反应产物HF,破坏SEI | 1. 1.2 mol/L电解液电导率最高; 2. 1 mol/L以上利于长循环寿命 | 好 | 好 |
LiBF4 | 1.对水分不敏感; 2.分解温度390 ℃,热稳定性好; 3.溶剂中分解温度大于100 ℃; 4.离子电导率低,常用作添加剂 | 1.高温优于LiBOB,低温性能较好; 2.使用量0.5%以内 | 好 | 好 |
LiBOB | 1.溶解度低; 2.离子电导率低于LiPF6; 3.吸湿性; 4.成膜性能优异,参与SEI膜形成; 5.分解温度302 ℃,热稳定性好 | 1.提升锰酸锂循环并抑制膨胀; 2.负极成膜稳定,可以在PC溶剂中使用,拓宽电池温度适用范围; 3.使用量1%以内 | 好 | 好 |
LiODFB | 1.分解温度240 ℃,不会在高温条件下与溶剂反应; 2.电导率介于LiBF4和LiBOB之间; 3.负极成膜稳定,阻抗小 | 1.高压体系使用较多,与其他添加剂组合使用更好; 2.影响电解液酸度测试; 3.使用量1%以内 | 好 | 好 |
LiTFSI | 1.较高的电化学稳定性和电导率; 2.分解温度370 ℃,热稳定性好; 3.对于电压要求不高的电池有优势 | 1.高低温性能、安全性能及容量方面,都超过了LiClO4电解液; 2.使用量1.5%以内 | 差 | 好 |
LiFSI | 1.具有较优异的电导率; 2.分解温度308 ℃,热稳定性好; 2.低温性能好,在低于-20 ℃时,有着明显的优势; 3.可以抑制软包电池胀气 | 1.提升倍率; 2.提升低温性能; 3.使用量1.5%以内 | 差 | 好 |
Table 3
Electrolyte components"
Number | Sample name | Electrolyte composition |
---|---|---|
1# | BA0%+EC0% | Base(DMC∶EMC=3∶5)+1 mol/L LPF |
2# | BA16%+EC10% | Base+16%BA+10%EC+1 mol/L LPF |
3# | 0.1 mol/L LBF | Base+16%BA+10%EC+0.1 mol/L LBF+0.9 mol/L LPF |
4# | 0.2 mol/L LBF | Base+16%BA+10%EC+0.2 mol/L LBF+0.8 mol/L LPF |
5# | 0.3 mol/L LBF | Base+16%BA+10%EC+0.3 mol/L LBF+0.7 mol/L LPF |
Fig. 19
Cycle performance of NCM-811 battery using pristine 1# (BA0 + EC0) electrolyte charging discharging at low temperatures (a) -20 ℃; (b) -30 ℃; (c) -40 ℃; Cycle performance of NCM-811 battery using pristine 2# (BA16 + EC10) electrolyte charging-discharging at low temperatures (d) -20℃; (e) -30 ℃; (f) -40 ℃; Cycle performance of NCM-811 battery using pristine 5# (0.3 mol/L LBF) electrolyte charging-discharging at low temperatures (g) -20 ℃; (h) -30 ℃; (i) -40 ℃; Comparison of cycle performance of batteries using different electrolytes (j) -20 ℃; (k) -30 ℃; (l) -40 ℃[56]"
Table 4
Low temperature battery electrolyte design"
Electrolyte | Cathode | Test temperature/℃ | Current density | Cycling | Capacity /(mAh/g) | Reference |
---|---|---|---|---|---|---|
LiPF6+80%EC/DMC(30∶70)+2%FEC+20%MA | NCM532 | 20 | 0.5 C | 100 | 202 | [ |
1 mol/L LiPF6+0.05 mol/L CsPF6+EC/PC/EMC(1∶1∶8) | Gr||NCM111 | -40 | 0.2 C | 400 | 40 | [ |
1.2 mol/L LiTFSI/AN/FM | NCM622 | -20 | 0.2 C | 100 | 130 | [ |
1 mol/L LiDFOB/FEC/IZ | C | -10 | 0.1 C | 20 | 155 | [ |
BE+MA+1%TMSP+1%PCS | MCMB||LiNi0.5Mn1.5O4 | -5 | 0.3 C | 200 | 102 | [ |
1.28 mol/L LiFSI+FEMC/FEC-D2 | NCA | -20 | 1/3 C | 400 | 150 | [ |
BA16%+EC10%+0.3 mol/L LBF | NCM811 | -20 | 0.1 C | 10 | 150 | [ |
1 mol/L LiFSI-LiNO3/DME | NCM811 | -91 | 5 C | 700 | 86 | [ |
Fig. 26
Electrochemical performance of LiFePO4||Li battery at -20 ℃ (a) Cyclic behavior using QSPE and LE; (b) Charge discharge characteristics of the 20th, 40th, 60th, 80th and 100th cycles at 0.2 C; (c) Multiplication performance of batteries using QSPE and LE; (d) Charge discharge characteristics within the range of 0.2—3C[61]"
1 | 赵世玺, 郭双桃, 赵建伟, 等. 锂离子电池低温特性研究进展[J]. 硅酸盐学报, 2016, 44(1): 19-28. |
ZHAO S X, GUO S T, ZHAO J W, et al. Development on low-temperature performance of lithium ion batteries[J]. Journal of the Chinese Ceramic Society, 2016, 44(1): 19-28. | |
2 | 韦连梅, 燕溪溪, 张素娜, 等. 锂离子电池低温电解液研究进展[J]. 储能科学与技术, 2017, 6(1): 69-77. |
WEI L M, YAN X X, ZHANG S N, et al. Progress of low-temperature electrolyte for lithium-ion battery[J]. Energy Storage Science and Technology, 2017, 6(1): 69-77. | |
3 | 吴凯卓, 王美, 尚晓锋, 等. 锂离子电池低温电解液优化途径[J]. 电池工业, 2017, 21(4): 50-53. |
WU K Z, WANG M, SHANG X F, et al. Optimization approach of low temperature electrolyte for lithium-ion batteries[J]. Chinese Battery Industry, 2017, 21(4): 50-53. | |
4 | 田君, 胡道中, 王一拓, 等. 低温锂离子启动电池用电解液及电极材料综述[J]. 电源技术, 2019, 43(4): 677-679. |
TIAN J, HU D Z, WANG Y T, et al. Application prospects of electrolytes and electrode materials for low-temperature lithium-ion starting batteries[J]. Chinese Journal of Power Sources, 2019, 43(4): 677-679. | |
6 | ZHANG N, DENG T, ZHANG S Q, et al. Critical review on low-temperature Li-ion/metal batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(15): doi: 10.1002/adma.202107899. |
7 | JIN C R. Comment on "multiphase, multiscale chemomechanics at extreme low temperatures: Battery electrodes for operation in a wide temperature range"[J]. Advanced Energy Materials, 2022, 12(25): doi: 10.1002/aenm.202200686. |
8 | LUO D, LI M, ZHENG Y, et al. Electrolyte design for lithium metal anode-based batteries toward extreme temperature application[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2021, 8(18): doi: 10.1002/advs.202101051. |
9 | WANG J H, ZHENG Q F, FANG M M, et al. Concentrated electrolytes widen the operating temperature range of lithium-ion batteries[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2021, 8(18): doi: 10.1002/advs.202101646. |
10 | GU Y X, FANG S H, YANG L, et al. A non-flammable electrolyte for long-life lithium ion batteries operating over a wide-temperature range[J]. Journal of Materials Chemistry A, 2021, 9(27): 15363-15372. |
11 | ZHANG S, XU K, JOW T. Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte[J]. Journal of Solid State Electrochemistry, 2003, 7(3): 147-151. |
12 | KAFLE J, HARRIS J, CHANG J, et al. Development of wide temperature electrolyte for graphite/LiNiMnCoO2 Li-ion cells: High throughput screening[J]. Journal of Power Sources, 2018, 392: 60-68. |
13 | LIU B, LI Q Y, ENGELHARD M H, et al. Constructing robust electrode/electrolyte interphases to enable wide temperature applications of lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21496-21505. |
14 | LI Q, LIU G, CHENG H R, et al. Low-temperature electrolyte design for lithium-ion batteries: Prospect and challenges[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2021, 27(64): 15842-15865. |
15 | 张丽娟, 周园, 孙艳霞, 等. LiBF4/LiODFB混合盐电解液的低温性能[J]. 电池, 2018, 48(3): 138-141. |
ZHANG L J, ZHOU Y, SUN Y X, et al. Low temperature performance of LiBF4/LiODFB blend salts electrolyte[J]. Battery Bimonthly, 2018, 48(3): 138-141. | |
16 | LI S Y, LI X P, LIU J L, et al. A low-temperature electrolyte for lithium-ion batteries[J]. Ionics, 2015, 21(4): 901-907. |
17 | QIN M S, LIU M C, ZENG Z Q, et al. Rejuvenating propylene carbonate-based electrolyte through nonsolvating interactions for wide-temperature Li-ions batteries[J]. Advanced Energy Materials, 2022, 12(48): doi: 10.1002/aenm.202201801. |
18 | FAN X L, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4(10): 882-890. |
19 | MA Z K, CHEN J W, VATAMANU J, et al. Expanding the low-temperature and high-voltage limits of aqueous lithium-ion battery[J]. Energy Storage Materials, 2022, 45: 903-910. |
20 | XU G J, HUANG S Q, CUI Z L, et al. Functional additives assisted ester-carbonate electrolyte enables wide temperature operation of a high-voltage (5 V-Class) Li-ion battery[J]. Journal of Power Sources, 2019, 416: 29-36. |
21 | HOLOUBEK J, LIU H D, WU Z H, et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature[J]. Nature Energy, 2021, 6(3): 303-313. |
22 | PLICHTA E J, BEHL W K. A low-temperature electrolyte for lithium and lithium-ion batteries[J]. Journal of Power Sources, 2000, 88(2): 192-196. |
23 | KUMAR G, VASUDEVAN S, MUNIYANDI N. Conductivity of low-temperature electrolytes for magnesium batteries[J]. Journal of Power Sources, 1992, 39(2): 155-161. |
24 | YANG Y, YIN Y J, DAVIES D M, et al. Liquefied gas electrolytes for wide-temperature lithium metal batteries[J]. Energy & Environmental Science, 2020, 13(7): 2209-2219. |
25 | XU K, VON CRESCE A, LEE U. Differentiating contributions to "ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface[J]. Langmuir, 2010, 26(13): 11538-11543. |
26 | ZHANG S S, JOW T R, AMINE K, et al. LiPF6-EC-EMC electrolyte for Li-ion battery[J]. Journal of Power Sources, 2002, 107(1): 18-23. |
27 | 李斌, 陈占军, 黄文达. 双盐电解液改善LiFePO4/石墨电池的高低温性能[J]. 电池, 2019, 49(6): 502-505. |
LI B, CHEN Z J, HUANG W D. Improving high and low temperature performance of LiFePO4/graphite battery with double-salt electrolyte[J]. Battery Bimonthly, 2019, 49(6): 502-505. | |
28 | ZHOU H M, XIAO K W, LI J. Lithium difluoro(oxalate)borate and LiBF4 blend salts electrolyte for LiNi0.5Mn1.5O4 cathode material[J]. Journal of Power Sources, 2016, 302: 274-282. |
29 | MANDAL B K, PADHI A K, SHI Z, et al. New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2006, 162(1): 690-695. |
30 | WU X Y, DU Z J. Study of the corrosion behavior of LiFSI based electrolyte for Li-ion cells[J]. Electrochemistry Communications, 2021, 129: doi: 10.1016/j.elecom.2021.107088. |
31 | 李光珠, 陈坤, 朱阳阳, 等. 使用新型电解液的磷酸铁锂电池高低温性能[J]. 电源技术, 2019, 43(5): 765-767, 787. |
LI G Z, CHEN K, ZHU Y Y, et al. Behavior of LiFePO4 batteries in novel electrolyte at high/low temperature[J]. Chinese Journal of Power Sources, 2019, 43(5): 765-767, 787. | |
32 | XU K, ZHANG S S, LEE U, et al. LiBOB: Is it an alternative salt for lithium ion chemistry?[J]. Journal of Power Sources, 2005, 146(1/2): 79-85. |
33 | CHO Y G, LI M Q, HOLOUBEK J, et al. Enabling the low-temperature cycling of NMC||Graphite pouch cells with an ester-based electrolyte[J]. ACS Energy Letters, 2021, 6(5): 2016-2023. |
34 | XU G J, SHANGGUAN X H, DONG S M, et al. Formulation of blended-lithium-salt electrolytes for lithium batteries[J]. Angewandte Chemie International Edition, 2020, 59(9): 3400-3415. |
35 | 朱才建. NCM811材料电解液低温性能和NCM523材料循环性能改性研究[D]. 赣州: 江西理工大学, 2019. |
ZHU C J. Study on modification of electrolyte low temperature performance of NCM811 material and cycle performance of NCM523 material[D]. Ganzhou: Jiangxi University of Science and Technology, 2019. | |
36 | 边海燕. 低温锂离子电池电解液的设计开发[D]. 北京: 中国石油大学(北京), 2020. |
BIAN H Y. Design and development of low temperature electrolyte for lithium battery[D]. Beijing: China University of Petroleum (Beijing), 2020. | |
37 | LI Q Y, JIAO S H, LUO L L, et al. Wide-temperature electrolytes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18826-18835. |
38 | LOGAN E R, TONITA E M, GERING K L, et al. A study of the physical properties of Li-ion battery electrolytes containing esters[J]. Journal of the Electrochemical Society, 2018, 165(2): doi: 10.1149/2.0271802jes. |
39 | HOLOUBEK J, KIM K, YIN Y J, et al. Electrolyte design implications of ion-pairing in low-temperature Li metal batteries[J]. Energy & Environmental Science, 2022, 15(4): 1647-1658. |
40 | ZHANG W L, LU Y, WAN L, et al. Engineering a passivating electric double layer for high performance lithium metal batteries[J]. Nature Communications, 2022, 13(1): 1-12. |
41 | TAN S, RODRIGO U N D, SHADIKE Z, et al. Novel low-temperature electrolyte using isoxazole as the main solvent for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24995-25001. |
42 | CHENG H R, SUN Q J, LI L L, et al. Emerging era of electrolyte solvation structure and interfacial model in batteries[J]. ACS Energy Letters, 2022, 7(1): 490-513. |
43 | YU Z A, WANG H S, KONG X, et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries[J]. Nature Energy, 2020, 5(7): 526-533. |
44 | SU C C, HE M N, AMINE R, et al. Solvating power series of electrolyte solvents for lithium batteries[J]. Energy & Environmental Science, 2019, 12(4): 1249-1254. |
45 | QIAN Y X, HU S G, ZOU X S, et al. How electrolyte additives work in Li-ion batteries[J]. Energy Storage Materials, 2019, 20: 208-215. |
46 | JONES J P, SMART M C, KRAUSE F C, et al. The effect of electrolyte additives upon lithium plating during low temperature charging of graphite-LiNiCoAlO2 lithium-ion three electrode cells[J]. Journal of the Electrochemical Society, 2020, 167(2): doi: 10.1149/1945-7111/ab6bc2. |
47 | 高宏宇. 电解液添加剂对铅酸电池低温性能影响的研究[D]. 长春: 吉林大学, 2020. |
GAO H Y. Study on the influence of electrolyte additives on the low temperature performance of lead-acid batteries[D]. Changchun: Jilin University, 2020. | |
48 | 吕伟霞. 高性能锂离子电池电解液配方的设计及性能调控[D]. 赣州: 江西理工大学, 2021. |
LÜ/LV/LU/LYU W X. Design and performance control of electrolyte formulation for high-performance lithium-ion batteries[D]. Ganzhou: Jiangxi University of Science and Technology, 2021. | |
49 | 左文卿. 基于DTA/FEC添加剂的锂离子电池低温性能研究[D]. 徐州: 中国矿业大学, 2019. |
ZUO W Q. Research on low temperature performance of lithium ion batteries based on DTA/FEC additives[D]. Xuzhou: China University of Mining and Technology, 2019. | |
50 | YANG B W, ZHANG H, YU L, et al. Lithium difluorophosphate as an additive to improve the low temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite cells[J]. Electrochimica Acta, 2016, 221: 107-114. |
51 | HAREGEWOIN A M, WOTANGO A S, HWANG B J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives[J]. Energy & Environmental Science, 2016, 9(6): 1955-1988. |
52 | LIU X, SUN X H, SHI X X, et al. Low-temperature and high-performance Si/graphite composite anodes enabled by sulfite additive[J]. Chemical Engineering Journal, 2021, 421: doi: 10.1016/j.cej.2020.127782. |
53 | 姜文博, 王宥宏, 张俊婷, 等. EC基电解液添加剂对锂离子电池性能的影响[J]. 电池, 2022, 52(2): 144-147. |
JIANG W B, WANG Y H, ZHANG J T, et al. Effect of EC-based electrolyte additive on the performance of Li-ion battery[J]. Battery Bimonthly, 2022, 52(2): 144-147. | |
54 | LAVI O, LUSKI S, SHPIGEL N, et al. Electrolyte solutions for rechargeable Li-ion batteries based on fluorinated solvents[J]. ACS Applied Energy Materials, 2020, 3(8): 7485-7499. |
55 | 马国强, 王莉, 张建君, 等. 含有氟代溶剂或含氟添加剂的锂离子电解液[J]. 化学进展, 2016, 28(9): 1299-1312. |
MA G Q, WANG L, ZHANG J J, et al. Lithium-ion battery electrolyte containing fluorinated solvent and additive[J]. Progress in Chemistry, 2016, 28(9): 1299-1312. | |
56 | LV W X, ZHU C J, CHEN J, et al. High performance of low-temperature electrolyte for lithium-ion batteries using mixed additives[J]. Chemical Engineering Journal, 2021, 418: doi: 10.1016/j.cej.2021.129400. |
57 | SUN T J, ZHENG S B, DU H H, et al. Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery[J]. Nano-Micro Letters, 2021, 13(1): doi: 10.1007/s40820-021-00733-0. |
58 | ZHU F L, BAO H F, WU X S, et al. High-performance metal–organic framework-based single ion conducting solid-state electrolytes for low-temperature lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43206-43213. |
59 | TAN D H S, CHEN Y T, YANG H D, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes[J]. Science, 2021, 373(6562): 1494-1499. |
60 | XU S J, SUN Z H, SUN C G, et al. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature[J]. Advanced Functional Materials, 2020, 30(51): doi: 10.1002/adfm.202007172. |
61 | REN W H, ZHANG Y F, LV R X, et al. In-situ formation of quasi-solid polymer electrolyte for improved lithium metal battery performances at low temperatures[J]. Journal of Power Sources, 2022, 542: doi: 10.1016/j.jpowsour.2022.231773. |
[1] | Xiaoyu SHEN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Junfeg HAO, Mengyu TIAN, Hongxiang JI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2022 to Jan. 31, 2023) [J]. Energy Storage Science and Technology, 2023, 12(3): 639-653. |
[2] | Huimin ZHANG, Jing WANG, Yibo WANG, Jiaxin ZHENG, Jingyi QIU, Gaoping CAO, Hao ZHANG. Multiscale modeling of the SEI of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 366-382. |
[3] | Mengyu TIAN, Yida WU, Junfeng HAO, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2022 to Nov. 30, 2022) [J]. Energy Storage Science and Technology, 2023, 12(1): 1-15. |
[4] | Yuzhu GUO, Chunjun LIANG, Fulin SUN, Hongkang GONG, Qi SONG, Ting ZHU, Chenhui ZHANG. Rapid rechargeable aluminum-ion batteries with carbon electrode paste as a cathode material [J]. Energy Storage Science and Technology, 2023, 12(1): 16-22. |
[5] | Ziwei YUAN, Chuyuan LIN, Ziyan YUAN, Xiaoli SUN, Qingrong QIAN, Qinghua CHEN, Lingxing ZENG. The research process on low temperature performance of zinc ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 278-298. |
[6] | Jing ZHU, Yida WU, Junfeng HAO, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2022 to Jul. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(9): 3035-3050. |
[7] | Jun ZHANG, Qi LI, Ying TAO, Quanhong YANG. Sieving carbons for sodium-ion batteries: Origin and progress [J]. Energy Storage Science and Technology, 2022, 11(9): 2825-2833. |
[8] | Jinghua WU, Jing YANG, Gaozhan LIU, Zhiyan WANG, Zhihua ZHANG, Hailong YU, Xiayin YAO, Xuejie HUANG. Review and prospective of solid-state lithium batteries in the past decade (2011—2021) [J]. Energy Storage Science and Technology, 2022, 11(9): 2713-2745. |
[9] | Pengbo ZHAI, Dongmei CHANG, Zhijie BI, Ning ZHAO, Xiangxin GUO. Research progress on key interfacial issues in lithium lanthanum zirconium oxide-based solid-state [J]. Energy Storage Science and Technology, 2022, 11(9): 2847-2865. |
[10] | Qunbin ZHANG, Tao DONG, Jingjing LI, Yanxia LIU, Haitao ZHANG. Research progress on the recovery and high-value utilization of spent electrolyte from lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2798-2810. |
[11] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[12] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[13] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[14] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[15] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||