1 |
韩乔妮, 姜帆, 程泽. 变温度下IHF-IGPR框架的锂离子电池健康状态预测方法[J]. 电工技术学报, 2021, 36(17): 3705-3720.
|
|
HAN Q N, JIANG F, CHENG Z. State of health estimation for lithium-ion batteries based on the framework of IHF-IGPR under variable temperature[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3705-3720.
|
2 |
武龙星, 庞辉, 晋佳敏, 等. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7): 1703-1725.
|
|
WU L X, PANG H, JIN J M, et al. A review of SOC estimation methods for lithium-ion batteries based on electrochemical model[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1703-1725.
|
3 |
TIAN H X, QIN P L, LI K, et al. A review of the state of health for lithium-ion batteries: Research status and suggestions[J]. Journal of Cleaner Production, 2020, 261: doi: 10.1016/j.jclepro.2020.120813.
|
4 |
卢婷, 杨文强. 锂离子电池全生命周期内评估参数及评估方法综述[J]. 储能科学与技术, 2020, 9(3): 657-669.
|
|
LU T, YANG W Q. Review of evaluation parameters and methods of lithium batteries throughout its life cycle[J]. Energy Storage Science and Technology, 2020, 9(3): 657-669.
|
5 |
LU J H, XIONG R, TIAN J P, et al. Battery degradation prediction against uncertain future conditions with recurrent neural network enabled deep learning[J]. Energy Storage Materials, 2022, 50: 139-151.
|
6 |
谭必蓉,杜建华,叶祥虎等.基于模型的锂离子电池SOC估计方法综述[J].储能科学与技术,2023,12(06):1995-2010.
|
|
TAN B R, DU J H, YE X H, et al. Overview of SOC estimation methods of lithium-ion batteries based on model[J]. Energy Storage Science and Technology, 2023,12(06):1995-2010.
|
7 |
CHO S, JEONG H, HAN C H, et al. State-of-charge estimation for lithium-ion batteries under various operating conditions using an equivalent circuit model[J]. Computers & Chemical Engineering, 2012, 41: 1-9.
|
8 |
杨杰, 王婷, 杜春雨, 等. 锂离子电池模型研究综述[J]. 储能科学与技术, 2019, 8(1): 58-64.
|
|
YANG J, WANG T, DU C Y, et al. Overview of the modeling of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(1): 58-64.
|
9 |
李练兵, 李思佳, 李洁, 等. 基于差分电压和Elman神经网络的锂离子电池RUL预测方法[J]. 储能科学与技术, 2021, 10(6): 2373-2384.
|
|
LI L B, LI S J, LI J, et al. RUL prediction method of lithium ion battery based on differential voltage and Elman neural network[J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384.
|
10 |
HE W, WILLIARD N, OSTERMAN M, et al. Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method[J]. Journal of Power Sources, 2011, 196(23): 10314-10321.
|
11 |
ZHANG Y Z, XIONG R, HE H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705.
|
12 |
ZHANG Y B, WANG Y Y, XIA Y, et al. A deep learning approach to estimate the state of health of lithium-ion batteries under varied and incomplete working conditions[J]. Journal of Energy Storage, 2023, 58: doi: 10.1016/j.est.2022.106323.
|
13 |
ARAUJO A, NORRIS W, SIM J. Computing receptive fields of convolutional neural networks[J]. Distill, 2019, 4(11): doi: 10.23915/distill.00021.
|
14 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 770-778.
|
15 |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 25-26.
|
|
ZHOU Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016: 25-26.
|