Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (7): 2263-2270.doi: 10.19799/j.cnki.2095-4239.2023.0192
Previous Articles Next Articles
Qingsong ZHANG(), Fangwei BAO(), Jiangjao NIU
Received:
2023-03-30
Revised:
2023-04-20
Online:
2023-07-05
Published:
2023-07-25
Contact:
Fangwei BAO
E-mail:nkzqsong@126.com;bfw1118@126.com
CLC Number:
Qingsong ZHANG, Fangwei BAO, Jiangjao NIU. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2263-2270.
1 | 张青松, 赵洋, 刘添添. 荷电状态和电池排列对锂离子电池热失控传播的影响[J]. 储能科学与技术, 2022, 11(8): 2519-2525. |
ZHANG Q S, ZHAO Y, LIU T T. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. | |
2 | 赵春朋, 王青松, 余彦. 密闭空间中锂离子电池的热爆炸危险性[J]. 储能科学与技术, 2018, 7(3): 424-430. |
ZHAO C P, WANG Q S, YU Y. Thermal explosion hazards of lithium-ion batteries in hermetic space[J]. Energy Storage Science and Technology, 2018, 7(3): 424-430. | |
3 | KAPP E A, WROTH D S, CHAPIN J T. Analysis of thermal runaway incidents involving lithium batteries in U.S. commercial aviation[J]. Transportation Research Record: Journal of the Transportation Research Board, 2020, 2674(11): 584-592. |
4 | WILLIARD N, HENDRICKS C, SOOD B, et al. Evaluation of batteries for safe air transport[J]. Energies, 2016, 9(5): 340. |
5 | CHEN S C, WANG Z R, WANG J H, et al. Lower explosion limit of the vented gases from Li-ion batteries thermal runaway in high temperature condition[J]. Journal of Loss Prevention in the Process Industries, 2020, 63: doi: 10.1016/j.jlp.2019.103992. |
6 | HENRIKSEN M, VAAGSAETHER K, LUNDBERG J, et al. Explosion characteristics for Li-ion battery electrolytes at elevated temperatures[J]. Journal of Hazardous Materials, 2019, 371: 1-7. |
7 | WANG Z, YANG H, LI Y, et al. Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods[J]. Journal of Hazardous Materials, 2019, 379: doi: 10.1016/j.jhazmat.2019.06.007. |
8 | FU Y Y, LU S, LI K Y, et al. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter[J]. Journal of Power Sources, 2015, 273: 216-222. |
9 | ZHANG Q S, NIU J H, ZHAO Z H, et al. Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states[J]. Journal of Energy Storage, 2022, 45: doi: 10.1016/j.est.2021.103759. |
10 | 张青松, 曲奕润, 郝朝龙, 等. 三元锂离子电池热失控气体原位分析[J]. 高电压技术, 2022, 48(7): 2817-2825. |
ZHANG Q S, QU Y R, HAO C L, et al. In-situ analysis of thermal runaway gas in ternary lithium-ion battery[J]. High Voltage Engineering, 2022, 48(7): 2817-2825. | |
11 | FU Y Y, LU S, SHI L, et al. Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure[J]. Energy, 2018, 161: 38-45. |
12 | 张青松, 刘添添, 赵洋. 受限空间环境压力对三元锂离子电池热失控影响[J]. 中国安全生产科学技术, 2021, 17(6): 36-40. |
ZHANG Q S, LIU T T, ZHAO Y. Influence of environmental pressure in confined space on thermal runaway of ternary lithium ion battery[J]. Journal of Safety Science and Technology, 2021, 17(6): 36-40. | |
13 | LI Y W, JIANG L H, HUANG Z H, et al. Pressure effect on the thermal runaway behaviors of lithium-ion battery in confined space[J]. Fire Technology, 2022: 1-19. |
14 | CHEN M Y, LIU J H, HE Y P, et al. Study of the fire hazards of lithium-ion batteries at different pressures[J]. Applied Thermal Engineering, 2017, 125: 1061-1074. |
15 | FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. |
16 | STRAUSS F, TEO J H, SCHIELE A, et al. Gas evolution in lithium-ion batteries: Solid versus liquid electrolyte[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20462-20468. |
17 | GACHOT G, GRUGEON S, ESHETU G G, et al. Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis[J]. Electrochimica Acta, 2012, 83: 402-409. |
18 | GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4(7): 3633-3642. |
19 | ZOU K Y, LU S X, CHEN X, et al. Thermal and gas characteristics of large-format LiNi0.8Co0.1Mn0.1O2 pouch power cell during thermal runaway[J]. Journal of Energy Storage, 2021, 39: doi: 10.1016/j.est.2021.102609. |
20 | JIA Z Z, QIN P, LI Z, et al. Analysis of gas release during the process of thermal runaway of lithium-ion batteries with three different cathode materials[J]. Journal of Energy Storage, 2022, 50: doi: 10.1016/j.est.2022.104302. |
21 | ASTM E918-19.Standard practice for determining limits of flammability of chemicals at elevated temperature and pressure[S/OL]. America. [2022-07-01]. doi: 10.1520/E0918-19. |
22 | LI W F, WANG H W, ZHANG Y J, et al. Flammability characteristics of the battery vent gas: A case of NCA and LFP lithium-ion batteries during external heating abuse[J]. Journal of Energy Storage, 2019, 24: doi: 10.1016/j.est.2019.100775. |
[1] | Yubo ZHANG, Youyuan WANG, Dongning HUANG, Ziyi WANG, Weigen CHEN. Prognostic method of lithium-ion battery lifetime degradation under various working conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2238-2245. |
[2] | Qinpei CHEN, Xuehui WANG, Wenzhong MI. Experiential study on the toxic and explosive characteristics of thermal runaway gas generated in electric-vehicle lithium-ion battery systems [J]. Energy Storage Science and Technology, 2023, 12(7): 2256-2262. |
[3] | Wenda ZAN, Rui ZHANG, Fei DING. Development and application of electrochemical models for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2302-2318. |
[4] | Hongsheng GUAN, Cheng QIAN, Binghui XU, Bo SUN, Yi REN. SAM-GRU-based fusion neural network for SOC estimation in lithium-ion batteries under a wide range of operating conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2229-2237. |
[5] | Maosong FAN, Mengmeng GENG, Guangjin ZHAO, Kai YANG, Fangfang WANG, Hao LIU. Research on battery sorting technology for echelon utilization based on multifrequency impedance [J]. Energy Storage Science and Technology, 2023, 12(7): 2202-2210. |
[6] | Jiayi ZHANG, Suting WENG, Zhaoxiang WANG, Xuefeng WANG. Solid electrolyte interphase (SEI) on graphite anode correlated with thermal runaway of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2105-2118. |
[7] | Yi WANG, Xuebing CHEN, Yuanxi WANG, Jieyun ZHENG, Xiaosong LIU, Hong LI. Overview of multilevel failure mechanism and analysis technology of energy storage lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2079-2094. |
[8] | Shuqin LIU, Xiaoyan WANG, Zhendong ZHANG, Zhenxia DUAN. Experimental and simulation research on liquid-cooling system of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2023, 12(7): 2155-2165. |
[9] | Jingxuan MA, Yuhang SONG, Shuang SHI, Nawei LYU, Kangyong YIN, Guirong WANG, Kaiyuan DU, Yang JIN. Early warning of the thermal runaway of liquid-cooled LiFePO4 battery module based on the sudden change of air-pressure signal detection [J]. Energy Storage Science and Technology, 2023, 12(7): 2246-2255. |
[10] | Xijiang SHEN, Qiangling DUAN, Peng QIN, Qingsong WANG, Jinhua SUN. Experimental study on thermal runaway mitigation and heat transfer characteristics of ternary lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1862-1871. |
[11] | Yuxin CHEN, Jiamu YANG, Dongbo LI, Cheng LIAN, Honglai LIU. Numerical simulation of the vacuum drying process of cylindrical lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1957-1967. |
[12] | Fang LI, Yongjun MIN, Yong ZHANG. Review of key technology research on the reliability of power lithium batteries based on big data [J]. Energy Storage Science and Technology, 2023, 12(6): 1981-1994. |
[13] | Yongli YI, Ran YU, Wu LI, Yi JIN, Zheren DAI. Preparation of Mo, Al-doped Li7La3Zr2O12-based composite solid electrolyte and performance of all-solid-state batterys [J]. Energy Storage Science and Technology, 2023, 12(5): 1490-1499. |
[14] | Linze LI, Xiangwen ZHANG. SOH estimation for lithium-ion batteries based on combination of frequency impedance characteristics [J]. Energy Storage Science and Technology, 2023, 12(5): 1705-1712. |
[15] | Luhao HAN, Ziyang WANG, Xiaolong HE, Chunshan HE, Xiaolong SHI, Bin YAO. The effect of water mist strategies on thermal runaway fire suppression of large-capacity NCM lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(5): 1664-1674. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||