Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (11): 3519-3527.doi: 10.19799/j.cnki.2095-4239.2023.0514
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Baihai MAO(), Wu QIN(), Xianbin XIAO, Zongming ZHENG
Received:
2023-07-31
Revised:
2023-09-04
Online:
2023-11-05
Published:
2023-11-16
Contact:
Wu QIN
E-mail:bh_mao@ncepu.edu.cn;qinwu@ncepu.edu.cn
CLC Number:
Baihai MAO, Wu QIN, Xianbin XIAO, Zongming ZHENG. SOH estimation of lithium-ion batteries based on LSTM&GRU-Attention multijoint model[J]. Energy Storage Science and Technology, 2023, 12(11): 3519-3527.
Table 3
Comparison of SOH errors among five models"
评价 指标 | 模型 | 电池 | |||
---|---|---|---|---|---|
B0005 | B0006 | B0007 | B0018 | ||
MAE | LSTM | 0.02526 | 0.01629 | 0.01468 | 0.01550 |
GRU | 0.02143 | 0.01305 | 0.00947 | 0.01462 | |
LSTM-Attention | 0.01019 | 0.00807 | 0.00723 | 0.01142 | |
GRU-Attention | 0.00757 | 0.00672 | 0.00609 | 0.00840 | |
线性回归加权法 | 0.00079 | 0.00200 | 0.00138 | 0.00184 | |
RMSE | LSTM | 0.02911 | 0.02012 | 0.01545 | 0.01669 |
GRU | 0.02368 | 0.01349 | 0.01047 | 0.01523 | |
LSTM-Attention | 0.01026 | 0.00903 | 0.00892 | 0.01360 | |
GRU-Attention | 0.00880 | 0.00772 | 0.00777 | 0.00998 | |
线性回归加权法 | 0.00146 | 0.00291 | 0.00232 | 0.00218 |
1 | 中国电力企业联合会. 2022年度电化学储能电站行业统计数据[EB/OL]. [2023-03-15]. https://cec.org.cn/index.html. |
2 | GANDOMAN F H, JAGUEMONT J, GOUTAM S, et al. Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges[J]. Applied Energy, 2019, 251: 113343. |
3 | SUI X, HE S, VILSEN S B, et al. A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery[J]. Applied Energy, 2021, 300: 117346. |
4 | 熊庆, 邸振国, 汲胜昌. 锂离子电池健康状态估计及寿命预测研究进展综述[J/OL]. 高电压技术: 1-14[2023-08-16]. https://doi.org/10.13336/j.1003-6520.hve.20221843. |
XIONG Q, DI Z G, JI S C. A review of research progress on health state estimation and life prediction of lithium-ion batteries[J/OL]. High Voltage Technology:1-14[2023-08-16]. https://doi.org/10.13336/j.1003-6520.hve.20221843. | |
5 | LUO K, CHEN X, ZHENG H R, et al. A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 74: 159-173. |
6 | 魏梓轩, 韩晓娟, 李炫. 基于深度神经网络的梯次利用电池健康状态评估[J]. 太阳能学报, 2022, 43(5): 518-524. |
WEI Z X, HAN X J, LI X. State of health assessment for echelon utilization batteries based on deep neural network[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 518-524. | |
7 | VAN C N, QUANG D T. Estimation of SoH and internal resistances of Lithium ion battery based on LSTM network[J]. International Journal of Electrochemical Science, 2023, 18(6): 100166. |
8 | GONG Y D, ZHANG X Y, GAO D Z, et al. State-of-health estimation of lithium-ion batteries based on improved long short-term memory algorithm[J]. Journal of Energy Storage, 2022, 53: 105046. |
9 | GAO M Y, BAO Z Y, ZHU C X, et al. HFCM-LSTM: A novel hybrid framework for state-of-health estimation of lithium-ion battery[J]. Energy Reports, 2023, 9: 2577-2590. |
10 | LIN M Q, WU J, MENG J H, et al. State of health estimation with attentional long short-term memory network for lithium-ion batteries[J]. Energy, 2023, 268: 126706. |
11 | ZHENG Y X, HU J X, CHEN J J, et al. State of health estimation for lithium battery random charging process based on CNN-GRU method[J]. Energy Reports, 2023, 9: 1-10. |
12 | 孙丙香, 苏晓佳, 马仕昌, 等. 基于低频阻抗谱和健康特征融合的锂离子电池健康状态主动探测方法研究[J]. 电力系统保护与控制, 2022, 50(7): 23-30. |
SUN B X, SU X J, MA S C, et al. An active detection method of li-ion battery health state based on low-frequency EIS and health feature fusion[J]. Power System Protection and Control, 2022, 50(7): 23-30. | |
13 | ZOU C Y, CHEN X, ZHANG Y D. State of health prediction of lithium-ion batteries based on temporal degeneration feature extraction with deep cycle attention network[J]. Journal of Energy Storage, 2023, 65: 107367. |
14 | 王凡, 史永胜, 刘博亲, 等. 基于注意力改进BiGRU的锂离子电池健康状态估计[J]. 储能科学与技术, 2021, 10(6): 2326-2333. |
WANG F, SHI Y S, LIU B Q, et al. Health state estimation of lithium-ion battery based on attention improvement BiGRU[J]. Energy Storage Science and Technology, 2021, 10(6): 2326-2333. | |
15 | JIANG Y Y, CHEN Y, YANG F F, et al. State of health estimation of lithium-ion battery with automatic feature extraction and self-attention learning mechanism[J]. Journal of Power Sources, 2023, 556: 232466. |
16 | 张帅涛. 基于机器学习的锂电池荷电状态及健康状态预测研究[D]. 桂林: 广西师范大学, 2022. |
ZHANG S T. Research on prediction of state of charge and health of lithium battery based on machine learning[D].Guilin: Guangxi Normal University, 2022. | |
17 | National Aeronautics and Space Administration Prognostics Center of Excellence. PCoE Datasets [EB/OL].[2023-06-01]. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#battery. |
18 | HU X S, CHE Y H, LIN X K, et al. Battery health prediction using fusion-based feature selection and machine learning[J]. IEEE Transactions on Transportation Electrification, 2021, 7(2): 382-398. |
19 | DUAN W X, SONG S X, XIAO F, et al. Battery SOH estimation and RUL prediction framework based on variable forgetting factor online sequential extreme learning machine and particle filter[J]. Journal of Energy Storage, 2023, 65: 107322. |
20 | XU H W, WU L F, XIONG S Z, et al. An improved CNN-LSTM model-based state-of-health estimation approach for lithium-ion batteries[J]. Energy, 2023, 276: 127585. |
21 | PARK K, CHOI Y, CHOI W J, et al. LSTM-based battery remaining useful life prediction with multi-channel charging profiles[J]. IEEE Access, 2020, 8: 20786-20798. |
22 | XU P H, WANG C C, YE J L, et al. State-of-charge estimation and health prognosis for lithium-ion batteries based on temperature-compensated Bi-LSTM network and integrated attention mechanism[J]. IEEE Transactions on Industrial Electronics, 2865, PP(99): 1-11. |
23 | 董波, 陈艾睿, 张明. 机器学习在解决过拟合现象中的作用[J]. 心理科学, 2021, 44(2): 274-281. |
DONG B, CHEN A R, ZHANG M. The role of machine learning in solving overfitting[J]. Journal of Psychological Science, 2021, 44(2): 274-281. | |
24 | 张孝远, 张金浩, 蒋亚俊. 基于改进TCN模型的动力电池健康状态评估[J]. 储能科学与技术, 2022, 11(5): 1617-1626. |
ZHANG X Y, ZHANG J H, JIANG Y J. Power battery health evaluation based on improved TCN model[J]. Energy Storage Science and Technology, 2022, 11(5): 1617-1626. |
[1] | Shaohong ZENG, Weixiong WU, Jizhen LIU, Shuangfeng WANG, Shifeng YE, Zhenyu FENG. A review of research on immersion cooling technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. |
[2] | Xin CHEN, Yunwu LI, Xincheng LIANG, Falin LI, Zhidong ZHANG. Battery health state estimation of combined Transformer-GRU based on modal decomposition [J]. Energy Storage Science and Technology, 2023, 12(9): 2927-2936. |
[3] | Jiwei LI, Ruihan LIU, Taolin LU, Long PAN, Changjun MA, Qingbo LI, Zhiyun ZHAO, Wen YANG, Jingying XIE. Early fault diagnosis of lithium-ion battery packs based on improved local outlier detection and standard deviation method [J]. Energy Storage Science and Technology, 2023, 12(9): 2917-2926. |
[4] | Xiangyang ZHOU, Yingjie HU, Jiahao LIANG, Qijie ZHOU, Kang WEN, Song CHEN, Juan YANG, Jingjing TANG. Preparation and lithium storage characteristics of high-performance anode materials based on spheroidized tailings of natural flake graphite [J]. Energy Storage Science and Technology, 2023, 12(9): 2767-2777. |
[5] | Wanwei JIANG, Chengjing LIANG, Li QIAN, Meicheng LIU, Mengxiang ZHU, Jun MA. Regulating tin-based three-dimensional graphene foam and its performance as a lithium-ion battery anode [J]. Energy Storage Science and Technology, 2023, 12(9): 2746-2751. |
[6] | Anhao ZUO, Ruqing FANG, Zhe LI. Kinetic characterization of electrode materials for lithium-ion batteries via single-particle microelectrodes [J]. Energy Storage Science and Technology, 2023, 12(8): 2457-2481. |
[7] | Yu GUO, Yiwei WANG, Juan ZHONG, Jinqiao DU, Jie TIAN, Yan LI, Fangming JIANG. Fault diagnosis method for microinternal short circuits in lithium-ion batteries based on incremental capacity curve [J]. Energy Storage Science and Technology, 2023, 12(8): 2536-2546. |
[8] | Jiaxing YANG, Hengyun ZHANG, Yidong XU. Heat generation analysis for lithium-ion battery components using electrochemical and thermal coupled model [J]. Energy Storage Science and Technology, 2023, 12(8): 2615-2625. |
[9] | Jilu ZHANG, Yuchen DONG, Qiang SONG, Siming YUAN, Xiaodong GUO. Controllable synthesis and electrochemical mechanism related to polycrystalline and single-crystalline Ni-rich layered LiNi0.9Co0.05Mn0.05O2 cathode materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2382-2389. |
[10] | Qingsong ZHANG, Fangwei BAO, Jiangjao NIU. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2263-2270. |
[11] | Hongsheng GUAN, Cheng QIAN, Binghui XU, Bo SUN, Yi REN. SAM-GRU-based fusion neural network for SOC estimation in lithium-ion batteries under a wide range of operating conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2229-2237. |
[12] | Yubo ZHANG, Youyuan WANG, Dongning HUANG, Ziyi WANG, Weigen CHEN. Prognostic method of lithium-ion battery lifetime degradation under various working conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2238-2245. |
[13] | Qinpei CHEN, Xuehui WANG, Wenzhong MI. Experiential study on the toxic and explosive characteristics of thermal runaway gas generated in electric-vehicle lithium-ion battery systems [J]. Energy Storage Science and Technology, 2023, 12(7): 2256-2262. |
[14] | Wenda ZAN, Rui ZHANG, Fei DING. Development and application of electrochemical models for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2302-2318. |
[15] | Maosong FAN, Mengmeng GENG, Guangjin ZHAO, Kai YANG, Fangfang WANG, Hao LIU. Research on battery sorting technology for echelon utilization based on multifrequency impedance [J]. Energy Storage Science and Technology, 2023, 12(7): 2202-2210. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||