Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (11): 3499-3507.doi: 10.19799/j.cnki.2095-4239.2023.0427
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Runxing LIU1(), Yucheng GAI1, Pinzhe YANG1, Wei ZHANG2, Qin LIU2(), Zejun DING2, Xizhe MO2
Received:
2023-06-25
Revised:
2023-08-10
Online:
2023-11-05
Published:
2023-11-16
Contact:
Qin LIU
E-mail:run_xing@163.com;liuqinmail@wo.cn
CLC Number:
Runxing LIU, Yucheng GAI, Pinzhe YANG, Wei ZHANG, Qin LIU, Zejun DING, Xizhe MO. Health-status detection of lead-acid battery based on AC impedance spectroscopy[J]. Energy Storage Science and Technology, 2023, 12(11): 3499-3507.
1 | 丁一, 刘盛终, 王旭东, 等. 基于混合核函数相关向量机的铅酸蓄电池SOH估计方法研究[J]. 电气传动, 2021, 51(22): 56-62. |
DING Y, LIU S Z, WANG X D, et al. The SOH estimate method research on lead-acid battery based on mixture kernels function RVM[J]. Electric Drive, 2021, 51(22): 56-62. | |
2 | 钟国彬, 刘新天, 何耀, 等. 变电站用铅酸电池SOH估计[J]. 电源技术, 2016, 40(12): 2407-2410. |
ZHONG G B, LIU X T, HE Y, et al. Estimation of SOH of lead-acid batteries in substation[J]. Chinese Journal of Power Sources, 2016, 40(12): 2407-2410. | |
3 | 张利国, 李宇剑, 刘乐, 等. 基于参数分析的蓄电池模型健康状态估计[J]. 自动化仪表, 2022, 43(2): 69-75. |
ZHANG L G, LI Y J, LIU L, et al. Health state estimation of battery model based on parameter analysis[J]. Process Automation Instrumentation, 2022, 43(2): 69-75. | |
4 | XIONG R, LI L L, LI Z R, et al. An electrochemical model based degradation state identification method of Lithium-ion battery for all-climate electric vehicles application[J]. Applied Energy, 2018, 219: 264-275. |
5 | 蒋海锋, 万畅, 林树胜. 基于SOM神经网络的蓄电池SOH快速检测研究[J]. 工业控制计算机, 2023, 36(3): 132-134. |
JIANG H F, WAN C, LIN S S. Research on rapid detection of battery health based on SOM neural network[J]. Industrial Control Computer, 2023, 36(3): 132-134. | |
6 | CAI L, MENG J H, STROE D I, et al. Multiobjective optimization of data-driven model for lithium-ion battery SOH estimation with short-term feature[J]. IEEE Transactions on Power Electronics, 2020, 35(11): 11855-11864. |
7 | 颜湘武, 邓浩然, 郭琪, 等. 基于自适应无迹卡尔曼滤波的动力电池健康状态检测及梯次利用研究[J]. 电工技术学报, 2019, 34(18): 3937-3948. |
YAN X W, DENG H R, GUO Q, et al. Study on the state of health detection of power batteries based on adaptive unscented Kalman filters and the battery echelon utilization[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3937-3948. | |
8 | 胡广方. 基于交流阻抗特性的锂离子电池析锂特征及安全性研究[D]. 长沙: 湖南大学, 2021. |
HU G F. Study on lithium evolution characteristics and safety of lithium-ion batteries based on AC impedance characteristics[D].Changsha: Hunan University, 2021. | |
9 | 郑贵林, 陶志浩. 大容量蓄电池SOH及SOC检测系统的研究与设计[J]. 武汉大学学报(工学版), 2019, 52(1): 83-88. |
ZHENG G L, TAO Z H. Research and design of SOH and SOC detection system for large capacity battery[J]. Engineering Journal of Wuhan University, 2019, 52(1): 83-88. | |
10 | 董明, 范文杰, 刘王泽宇, 等. 基于特征频率阻抗的锂离子电池健康状态评估[J]. 中国电机工程学报, 2022, 42(24): 9094-9105. |
DONG M, FAN W J, LIU W, et al. Health assessment of lithium-ion batteries based on characteristic frequency impedance[J]. Proceedings of the CSEE, 2022, 42(24): 9094-9105. | |
11 | 陈晓宇, 耿萌萌, 王乾坤, 等. 基于电化学阻抗特征选择和高斯过程回归的锂离子电池健康状态估计方法[J]. 储能科学与技术, 2022, 11(9): 2995-3002. |
CHEN X Y, GENG M M, WANG Q K, et al. Electrochemical impedance feature selection and Gaussian process regression based on the state-of-health estimation method for lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. | |
12 | GASPER P, SCHIEK A, SMITH K, et al. Predicting battery capacity from impedance at varying temperature and state of charge using machine learning[J]. Cell Reports Physical Science, 2022, 3(12): 101184. |
13 | 耿萌萌, 范茂松, 杨凯, 等. 基于EIS和神经网络的退役电池SOH快速估计[J]. 储能科学与技术, 2022, 11(2): 673-678. |
GENG M M, FAN M S, YANG K, et al. Fast estimation method for state-of-health of retired batteries based on electrochemical impedance spectroscopy and neural network[J]. Energy Storage Science and Technology, 2022, 11(2): 673-678. | |
14 | ITAGAKI M, HONDA K, HOSHI Y, et al. In-situ EIS to determine impedance spectra of lithium-ion rechargeable batteries during charge and discharge cycle[J]. Journal of Electroanalytical Chemistry, 2015, 737: 78-84. |
15 | 梁芷睿. 变电站退役铅酸电池梯次利用的关键技术研究[D]. 西安: 西安交通大学, 2020. |
LIANG Z R. Research on key technologies used by retired lead-acid battery ladder in the substation[D]. Xi'an: Xi'an Jiaotong University, 2020. | |
16 | 吴磊, 吕桃林, 陈启忠, 等. 电化学阻抗谱测量与应用研究综述[J]. 电源技术, 2021, 45(9): 1227-1230. |
WU L, LV T L, CHEN Q Z, et al. Review of measurement and application of electrochemical impedance spectroscopy[J]. Chinese Journal of Power Sources, 2021, 45(9): 1227-1230. | |
17 | 周雅夫, 万伟东, 董启超. 基于改进多频正弦激励的燃料电池电化学阻抗谱测量[J]. 科学技术与工程, 2022, 22(22): 9679-9685. |
ZHOU Y F, WAN W D, DONG Q C. Electrochemistry impedance spectrum measurement of fuel cell based on improved multisine excitation[J]. Science Technology and Engineering, 2022, 22(22): 9679-9685. | |
18 | 黄鑫, 蓝贤桂. 基于交流注入法的铅酸蓄电池内阻检测系统[J]. 工业技术创新, 2020, 07(6): 67-74. |
HUANG X, LAN X G. Internal resistance detection system for lead-acid battery based on AC injection method[J]. Industrial Technology Innovation, 2020, 07(6): 67-74. |
[1] | Maosong FAN, Mengmeng GENG, Guangjin ZHAO, Kai YANG, Fangfang WANG, Hao LIU. Research on battery sorting technology for echelon utilization based on multifrequency impedance [J]. Energy Storage Science and Technology, 2023, 12(7): 2202-2210. |
[2] | Fang LI, Yongjun MIN, Yong ZHANG. Review of key technology research on the reliability of power lithium batteries based on big data [J]. Energy Storage Science and Technology, 2023, 12(6): 1981-1994. |
[3] | Linze LI, Xiangwen ZHANG. SOH estimation for lithium-ion batteries based on combination of frequency impedance characteristics [J]. Energy Storage Science and Technology, 2023, 12(5): 1705-1712. |
[4] | Xinhao ZHAO, Liang XU. Improved firefly optimization algorithm to optimize back propagation neural network for state of health estimation of power lithium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(3): 934-940. |
[5] | Ruijie WANG, Zhouli HUI, Ming YANG. Gaussian process regression based on indirect health indicators for SOH estimation of lithium battery [J]. Energy Storage Science and Technology, 2023, 12(2): 560-569. |
[6] | Chen WANG, Yongjun MIN. SOH estimation of lithium-ion batteries based on capacity increment curve and GWO-GPR [J]. Energy Storage Science and Technology, 2023, 12(11): 3508-3518. |
[7] | Xuanliang ZHANG, Ting HE, Wenlong ZHU, Shen WANG, Jianhua ZENG, Quan XU, Yingchun NIU. A SOH estimation model for energy storage batteries based on multiple cycle features [J]. Energy Storage Science and Technology, 2023, 12(11): 3488-3498. |
[8] | Baihai MAO, Wu QIN, Xianbin XIAO, Zongming ZHENG. SOH estimation of lithium-ion batteries based on LSTM&GRU-Attention multijoint model [J]. Energy Storage Science and Technology, 2023, 12(11): 3519-3527. |
[9] | Rui CHEN, Kai DING, Lianxing ZU, Qingsong XU, Zongbiao WANG, Dasi LUO, Jingjiang SU, Sheng HU, Jilong MAO. Prediction of state of health of lithium-ion batteries based on the AED-CEEMD-Transformer network [J]. Energy Storage Science and Technology, 2023, 12(10): 3242-3253. |
[10] | Qingyang CHEN, Yinghui HE, Guanding YU, Mingyang LIU, Chong XU, Zhenming LI. Integrating model- and data-driven methods for accurate state estimation of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 209-217. |
[11] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[12] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[13] | Xudong LI, Xiangwen ZHANG. State of health estimation method for lithium-ion batteries based on principal component analysis and whale optimization algorithm-Elman model [J]. Energy Storage Science and Technology, 2022, 11(12): 4010-4021. |
[14] | Shuang ZHANG, Jianing XU, Rongrong ZHANG, Zonghao LIU, Chenqi WANG, Ruonan LIU, Minglin RONG. State-of-health characteristics of all-vanadium redox flow batteries [J]. Energy Storage Science and Technology, 2022, 11(12): 4022-4029. |
[15] | Fang LI, Yongjun MIN, Chen WANG, Yong ZHANG. State of health estimation and remaining useful life predication of lithium batteries using charging process [J]. Energy Storage Science and Technology, 2022, 11(10): 3316-3327. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||