Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (4): 1338-1349.doi: 10.19799/j.cnki.2095-4239.2023.0655
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Yalu HAN1,3(), Yige CHEN2, Huifang DI1, Jiehuan LIN2, Zhenbing WANG1, Yang ZHANG2, Fangyuan SU1, Chengmeng CHEN1()
Received:
2023-09-15
Revised:
2023-10-07
Online:
2024-04-26
Published:
2024-04-22
Contact:
Chengmeng CHEN
E-mail:hanyalu20@mails.ucas.ac.cn;ccm@sxicc.ac.cn
CLC Number:
Yalu HAN, Yige CHEN, Huifang DI, Jiehuan LIN, Zhenbing WANG, Yang ZHANG, Fangyuan SU, Chengmeng CHEN. Research progress on failure of lithium-ion batteries under different service conditions[J]. Energy Storage Science and Technology, 2024, 13(4): 1338-1349.
1 | VETTER J, NOV\'AK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147(1): 269-281. |
2 | WEISS M, RUESS R, KASNATSCHEEW J, et al. Fast charging of lithium-ion batteries: A review of materials aspects[J]. Advanced Energy Materials, 2021, 11(33): 2101126. |
3 | JOW T R, DELP S A, ALLEN J L, et al. Factors limiting Li+ charge transfer kinetics in Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(2): A361-A367. |
4 | LIU Q Q, DU C Y, SHEN B, et al. Understanding undesirable anode lithium plating issues in lithium-ion batteries[J]. RSC Advances, 2016, 6(91): 88683-88700. |
5 | WALDMANN T, HOGG B I, WOHLFAHRT-MEHRENS M. Li plating as unwanted side reaction in commercial Li-ion cells - A review[J]. Journal of Power Sources, 2018, 384: 107-124. |
6 | XU K, VON CRESCE A, LEE U. Differentiating contributions to "ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface[J]. Langmuir, 2010, 26(13): 11538-11543. |
7 | LIN X K, KHOSRAVINIA K, HU X S, et al. Lithium plating mechanism, detection, and mitigation in lithium-ion batteries[J]. Progress in Energy and Combustion Science, 2021, 87: 100953. |
8 | LEGRAND N, KNOSP B, DESPREZ P, et al. Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling[J]. Journal of Power Sources, 2014, 245: 208-216. |
9 | BIRKENMAIER C, BITZER B, HARZHEIM M, et al. Lithium plating on graphite negative electrodes: Innovative qualitative and quantitative investigation methods[J]. Journal of the Electrochemical Society, 2015, 162(14): A2646-A2650. |
10 | PASTOR-FERNÁNDEZ C, BRUEN T, WIDANAGE W D, et al. A study of cell-to-cell interactions and degradation in parallel strings: Implications for the battery management system[J]. Journal of Power Sources, 2016, 329: 574-585. |
11 | BIRKL C R, ROBERTS M R, MCTURK E, et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017, 341: 373-386. |
12 | CHANDRASEKARAN R. Quantification of bottlenecks to fast charging of lithium-ion-insertion cells for electric vehicles[J]. Journal of Power Sources, 2014, 271: 622-632. |
13 | HEIN S, LATZ A. Influence of local lithium metal deposition in 3D microstructures on local and global behavior of Lithium-ion batteries[J]. Electrochimica Acta, 2016, 201: 354-365. |
14 | YU Z Y, BAI M H, SONG W F, et al. Influence of lithium difluorophosphate additive on the high voltage LiNi0.8Co0.1Mn0.1O2/graphite battery[J]. Ceramics International, 2021, 47(1): 157-162. |
15 | LI H Y, LIU A, ZHANG N, et al. An unavoidable challenge for Ni-rich positive electrode materials for lithium-ion batteries[J]. Chemistry of Materials, 2019, 31(18): 7574-7583. |
16 | KO D S, PARK J H, YU B Y, et al. Degradation of high-nickel-layered oxide cathodes from surface to bulk: A comprehensive structural, chemical, and electrical analysis[J]. Advanced Energy Materials, 2020, 10(36): 2001035. |
17 | ROMANO BRANDT L, MARIE J J, MOXHAM T, et al. Synchrotron X-ray quantitative evaluation of transient deformation and damage phenomena in a single nickel-rich cathode particle[J]. Energy & Environmental Science, 2020, 13(10): 3556-3566. |
18 | WANG L, QIU J Y, WANG X D, et al. Insights for understanding multiscale degradation of LiFePO4 cathodes[J]. eScience, 2022, 2(2): 125-137. |
19 | 刘晓梅, 姚斌, 谢乐琼, 等. 磷酸铁锂动力电池常温循环衰减机理分析[J]. 储能科学与技术, 2021, 10(4): 1338-1343. |
LIU X M, YAO B, XIE L Q, et al. Analysis of the capacity fading mechanism in lithium iron phosphate power batteries cycled at ambient temperatures[J]. Energy Storage Science and Technology, 2021, 10(4): 1338-1343. | |
20 | STIASZNY B, ZIEGLER J C, KRAUß E E, et al. Electrochemical characterization and post-mortem analysis of aged LiMn2O4-NMC/graphite lithium ion batteries part II: Calendar aging[J]. Journal of Power Sources, 2014, 258: 61-75. |
21 | KRUPP A, BECKMANN R, DIEKMANN T, et al. Calendar aging model for lithium-ion batteries considering the influence of cell characterization[J]. Journal of Energy Storage, 2022, 45: 103506. |
22 | KHALEGHI RAHIMIAN S, FOROUZAN M M, HAN S, et al. A generalized physics-based calendar life model for Li-ion cells[J]. Electrochimica Acta, 2020, 348: 136343. |
23 | SUI X, ŚWIERCZYŃSKI M, TEODORESCU R, et al. The degradation behavior of LiFePO4/C batteries during long-term calendar aging[J]. Energies, 2021, 14(6): 1732. |
24 | HAHN S L, STORCH M, SWAMINATHAN R, et al. Quantitative validation of calendar aging models for lithium-ion batteries[J]. Journal of Power Sources, 2018, 400: 402-414. |
25 | STREHLE B, FRIEDRICH F, GASTEIGER H A. A comparative study of structural changes during long-term cycling of NCM-811 at ambient and elevated temperatures[J]. Journal of the Electrochemical Society, 2021, 168(5): 050512. |
26 | CHAE B G, PARK S Y, SONG J H, et al. Evolution and expansion of Li concentration gradient during charge-discharge cycling[J]. Nature Communications, 2021, 12: 3814. |
27 | XU G J, PANG C G, CHEN B B, et al. Prescribing functional additives for treating the poor performances of high-voltage (5 V-class) LiNi0.5Mn1.5O4/MCMB Li-ion batteries[J]. Advanced Energy Materials, 2018, 8(9): 1701398. |
28 | TAN S, SHADIKE Z, LI J Z, et al. Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V[J]. Nature Energy, 2022, 7: 484-494. |
29 | WANG Y, CHANG X W, LI Z Y, et al. Preventing sudden death of high-energy lithium-ion batteries at elevated temperature through interfacial ion-flux rectification[J]. Advanced Functional Materials, 2023, 33(4): 2208329. |
30 | PETZ D, BARAN V, PESCHEL C, et al. Aging-driven composition and distribution changes of electrolyte and graphite anode in 18650-type Li-ion batteries[J]. Advanced Energy Materials, 2022, 12(45): 2201652. |
31 | 王其钰, 王朔, 张杰男, 等. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5): 1008-1025. |
WANG Q Y, WANG S, ZHANG J N, et al. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025. | |
32 | MOTAPON S N, LACHANCE E, DESSAINT L A, et al. A generic cycle life model for lithium-ion batteries based on fatigue theory and equivalent cycle counting[J]. IEEE Open Journal of the Industrial Electronics Society, 2020, 1: 207-217. |
33 | SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4: 383-391. |
34 | 史永胜, 李锦, 任嘉睿, 等. 基于WOA-XGBoost的锂离子电池剩余使用寿命预测[J]. 储能科学与技术, 2022, 11(10): 3354-3363. |
SHI Y S, LI J, REN J R, et al. Prediction of residual service life of lithium-ion battery using WOA-XGBoost[J]. Energy Storage Science and Technology, 2022, 11(10): 3354-3363. | |
35 | YI S Z, WANG B, CHEN Z A, et al. The difference in aging behaviors and mechanisms between floating charge and cycling of LiFePO4/graphite batteries[J]. Ionics, 2019, 25(5): 2139-2145. |
36 | 尹涛, 郑莉莉, 贾隆舟, 等. 锂离子电池浮充电研究综述[J]. 储能科学与技术, 2021, 10(1): 310-318. |
YIN T, ZHENG L L, JIA L Z, et al. Overview of research on float charging for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(1): 310-318. | |
37 | GUAN T, SUN S, GAO Y Z, et al. The effect of elevated temperature on the accelerated aging of LiCoO2/mesocarbon microbeads batteries[J]. Applied Energy, 2016, 177: 1-10. |
38 | HIROOKA M, SEKIYA T, OMOMO Y, et al. Improvement of float charge durability for LiCoO2 electrodes under high voltage and storage temperature by suppressing O1-Phase transition[J]. Journal of Power Sources, 2020, 463: 228127. |
39 | XIA J, NELSON K J, LU Z H, et al. Impact of electrolyte solvent and additive choices on high voltage Li-ion pouch cells[J]. Journal of Power Sources, 2016, 329: 387-397. |
40 | 赵伟, 肖祥, 梅成林. 磷酸铁锂/石墨电池浮充工况下的失效机理研究[J]. 电源技术, 2020, 44(4): 492-495. |
ZHAO W, XIAO X, MEI C L. Study on failure mechanism of LiFePO4/graphite battery under floating charge[J]. Chinese Journal of Power Sources, 2020, 44(4): 492-495. | |
41 | 孔令丽, 张克军, 夏晓萌, 等. 高电压锂离子电池高温浮充性能影响因素分析与改善[J]. 储能科学与技术, 2019, 8(6): 1165-1170. |
KONG L L, ZHANG K J, XIA X M, et al. Analysis and improvement of high temperature floating charge performance for high voltage lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1165-1170. | |
42 | TSUJIKAWA T, YABUTA K, MATSUSHITA T, et al. A study on the cause of deterioration in float-charged lithium-ion batteries using LiMn2O4 as a cathode active material[J]. Journal of the Electrochemical Society, 2011, 158(3): A322. |
43 | 尹涛. 浮充工况下储能锂离子电池性能研究[D]. 青岛: 青岛大学, 2022. |
YIN T. Study on performance of energy storage lithium-ion battery under floating charge condition[D]. Qingdao: Qingdao University, 2022. | |
44 | 李懿洋. 锂离子电池低温充放电循环与高温浮充下的失效机理研究[D]. 北京: 清华大学, 2017. |
LI Y Y. Study on the failure mechanism of lithium-ion batteries under low-temperature charge-discharge cycles and high-temperature float charge[D]. Beijing: Tsinghua University, 2017. |
[1] | Ge LI, Xiangdong KONG, Yuedong SUN, Fei CHEN, Yuebo YUAN, Xuebing HAN, Yuejiu ZHENG. Method for sorting the dynamic characteristics of lithium-ion battery consistency based on production line big data [J]. Energy Storage Science and Technology, 2024, 13(4): 1188-1196. |
[2] | Ruizi WANG, Xunliang LIU, Ruifeng DOU, Wenning ZHOU, Juan FANG. A comparative study on diffusion-induced stress and thermal stress during discharge of ternary soft pack lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(4): 1128-1141. |
[3] | Yuting WANG, Qiutong LI, Yiming HU, Xin GUO. Techniques for monitoring internal signals of lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1253-1265. |
[4] | Zhihao LIU, Yiqun GAO, Jun ZHANG, Zhibin LING, Xuguang LI. A fault diagnosis method for ground faults between CHB-BESS modules based on loss characteristic matrix [J]. Energy Storage Science and Technology, 2024, 13(3): 850-857. |
[5] | Xiaoyu SHEN, Congbo YIN. SOH estimation of lithium-ion batteries using a convolutional Fastformer [J]. Energy Storage Science and Technology, 2024, 13(3): 990-999. |
[6] | Zhiguo ZHANG, Huaqing LI, Li WANG, Xiangming HE. Characteristics and preparation of metallized plastic current collectors for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 749-758. |
[7] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. |
[8] | Yaning ZHU, Zhendong ZHANG, Lei SHENG, Long CHEN, Zehua ZHU, Linxiang FU, Qing BI. Thermal runaway experiment of 21700 lithium-ion battery under different health conditions [J]. Energy Storage Science and Technology, 2024, 13(3): 971-980. |
[9] | Meiling WU, Lei NIU, Shiyou LI, Dongni ZHAO. Research progress on cathode prelithium additives used in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 759-769. |
[10] | Mengqiong SONG, Yu PENG, Ziqiang LIAO. Research on battery thermal management based on electrochemical model [J]. Energy Storage Science and Technology, 2024, 13(2): 578-585. |
[11] | Yuanming SONG, Yajie LIU, Guang JIN, Xing ZHOU, Xucheng HUANG. Review of energy management methods for lithium-ion battery/supercapacitor hybrid energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(2): 652-668. |
[12] | Xiaolei LI, Jian GAO, Weidong ZHOU, Hong LI. Application of COMSOL multiphysics in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 546-567. |
[13] | Ke PENG, Zhicheng ZHANG, Youzhang HU, Xuhui ZHANG, Jiahui ZHOU, Bin LI. Finite element-based motion analysis and optimization of sagger in thermo-mechanical coupling field [J]. Energy Storage Science and Technology, 2024, 13(2): 634-642. |
[14] | Qikai LEI, Yin YU, Peng PENG, Man CHEN, Kaiqiang JIN, Qingsong WANG. Effect of thermal insulation material layout on thermal runaway propagation inhibition effect of 280 Ah lithium-iron phosphate battery [J]. Energy Storage Science and Technology, 2024, 13(2): 495-502. |
[15] | Ke LI, Yifan HAO, Zhenhua FANG, Jing WANG, Songtong ZHANG, Xiayu ZHU, Jingyi QIU, Hai MING. Development and military application analysis of high-power chemical power supply system [J]. Energy Storage Science and Technology, 2024, 13(2): 436-461. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||