Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (3): 749-758.doi: 10.19799/j.cnki.2095-4239.2023.0763
• Energy Storage Materials and Devices • Previous Articles Next Articles
Zhiguo ZHANG1(), Huaqing LI2, Li WANG1(), Xiangming HE1
Received:
2023-10-24
Revised:
2023-11-22
Online:
2024-03-28
Published:
2024-03-28
Contact:
Li WANG
E-mail:zhangzg@qsinghua.edu.cn;wang-l@tsinghua.edu.cn
CLC Number:
Zhiguo ZHANG, Huaqing LI, Li WANG, Xiangming HE. Characteristics and preparation of metallized plastic current collectors for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(3): 749-758.
Table 1
Characterization of conventional foils (CC) and PET-based MPCC (metallized plastic current collector)"
材料名称 | Cu | Cu MPCC | Al | Al MPCC | 测试方法 |
---|---|---|---|---|---|
厚度/μm | 6 | 6 | 13 | 6 | 马尔测厚仪 |
面密度/(g/m2) | 52 | 24 | 35 | 8.5 | 电子天平 |
抗拉强度(MD/TD)/MPa | 400/380 | 260/250 | 205/200 | 210~230/150~210 | 拉力机 |
断裂拉伸率(MD/TD)/% | 6.0/4.0 | 80/50 | 5.0/4.5 | 30~80/15~45 | 拉力机 |
表面达因系数 | >38 | 38±2 | >38 | 38±2 | 达因笔 |
方阻/mΩ | 3 | 20±2 | 2.1 | 40±2 | 四探针 |
热收缩率(MD/TD)/% | / | 0.2/0.01 | / | 0.15/0.01 | 烘箱(130 ℃/0.5 h) |
Table 2
Characterization of polymers in common MPCC (metallized plastic current collector)"
材料 | 聚对苯二甲酸乙二醇酯(PET) | 聚丙烯(PP) | 聚酰亚胺(PI) |
---|---|---|---|
工作温度范围/℃ | -60~120 | -30~140 | -269~280 |
抗拉强度/MPa | 高, 250 | 低, 25~45 | 高, 200 |
断裂伸长率/% | 90~150 | 200~400 | >50 |
粗糙度 | 很高 | 低 | 高 |
热稳定性 | 良好 | 良好 | 良好 |
与金属间的界面作用力 | 良好 | 较差 | 良好 |
耐酸碱腐蚀性 | 差 | 良好 | 优秀 |
成本/(美元/吨) | 1063 | 1120 | 高 |
质量密度/(g/cm3) | 1.29~1.41 | 0.85~0.99 | 1.39~1.45 |
技术成熟程度 | 成熟 | 成熟 | 难度大 |
生产阶段 | 量产 | 小试 | 实验室研发 |
是否环保 | 是 | 是 | 是 |
Table 3
Characterization of potential polymers in MPCC (metallized plastic current collector)"
材料 | PE | PVC | PS | PC | PVDF |
---|---|---|---|---|---|
全称 | Polyethylen | Polyvinyl chloride | Polystyrene | Polycarbonate | Polyvinylidene fluoride |
工作温度范围/℃ | -40~90 | -40~90 | -30~70 | -45~135 | -40~150 |
抗拉强度/MPa | 低, 6 | 低, 50~80 | 低, 36~60 | 低, 69 | 低, 50~70 |
断裂伸长率/% | 90~950 | 20~40 | 1.2~2.5 | 60~120 | 10~50 |
是否具有热稳定性 | 是 | 是 | 否 | 是 | 是 |
是否耐酸碱腐蚀 | 是 | 是 | 否 | 否 | 是 |
质量密度/(g/cm3) | 0.94~0.96 | 1.38~1.58 | 1.05 | 1.18~1.22 | 1.77~1.80 |
是否环保 | 是 | 否 | 否 | 是 | 是 |
Fig. 2
Structural design and type of metallized plastic composite collector (MPCC): (a) Aluminum metal deposited on polyethylene terephthalate (PET) substrate; (b) Copper metal deposited on polypropylene (PP) substrate by electroless plating; (c) Deposition of a copper metal layer on a graphitized polyimide (PI) substrate by vapor deposition. In order to ensure optimum conductivity of the current collector, carbonization of polymer or replacement of the metal coating with other conductive materials can be used"
1 | 李文俊, 徐航宇, 杨琪, 等. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2): 448-478. |
LI W J, XU H Y, YANG Q, et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 448-478. | |
2 | 高蕾, 孟玉凤, 颜琪斌, 等. 铜箔对动力锂离子电池性能的影响[J]. 储能科学与技术, 2020, 9(S1): 1-6. |
GAO L, MENG Y F, YAN Q B, et al. The influence of copper foil appearance quality on Li-ion power battery performance[J]. Energy Storage Science and Technology, 2020, 9(S1): 1-6. | |
3 | ZHU P C, GASTOL D, MARSHALL J, et al. A review of current collectors for lithium-ion batteries[J]. Journal of Power Sources, 2021, 485: 229321. |
4 | JEONG H, JANG J, JO C. A review on current collector coating methods for next-generation batteries[J]. Chemical Engineering Journal, 2022, 446: 136860. |
5 | YE Y S, CHOU L Y, LIU Y Y, et al. Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries[J]. Nature Energy, 2020, 5: 786-793. |
6 | CHOUDHURY R, WILD J, YANG Y. Engineering current collectors for batteries with high specific energy[J]. Joule, 2021, 5(6): 1301-1305. |
7 | YAZICI M S, KRASSOWSKI D, PRAKASH J. Flexible graphite as battery anode and current collector[J]. Journal of Power Sources, 2005, 141(1): 171-176. |
8 | WANG L, HE X M, LI J J, et al. Graphene-coated plastic film as current collector for lithium/sulfur batteries[J]. Journal of Power Sources, 2013, 239: 623-627. |
9 | KIM S W, CHO K Y. Current collectors for flexible lithium ion batteries: A review of materials[J]. Journal of Electrochemical Science and Technology, 2015, 6(1): 1-6. |
10 | YUN J H, HAN G B, LEE Y M, et al. Low resistance flexible current collector for lithium secondary battery[J]. Electrochemical and Solid-State Letters, 2011, 14(8): A116-A119. |
11 | XU S, ZHANG Y H, CHO J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems[J]. Nature Communications, 2013, 4: 1543. |
12 | JUNG M S, SEO J H, MOON M W, et al. A bendable Li-ion battery with a nano-hairy electrode: Direct integration scheme on the polymer substrate[J]. Advanced Energy Materials, 2015, 5(1): 1400611. |
13 | CHEN L L, SONG W L, LI N, et al. Nonmetal current collectors: The key component for high-energy-density aluminum batteries[J]. Advanced Materials, 2020, 32(42): 2001212. |
14 | LIU Z K, DONG Y H, QI X Q, et al. Stretchable separator/current collector composite for superior battery safety[J]. Energy & Environmental Science, 2022, 15(12): 5313-5323. |
15 | 王成豪, 李学法, 张国平. 低溶胀的复合集流体及其制备方法: CN114864953A[P]. 2022-08-05. |
WANG C H, LI X F, ZHANG G P. Low-swelling composite current collector and preparation method thereof: CN114864953A[P]. 2022-08-05. | |
16 | BARBIC P A, BINDER L, VOSS S, et al. Thin-film zinc/manganese dioxide electrodes based on microporous polymer foils[J]. Journal of Power Sources, 1999, 79(2): 271-276. |
17 | YIM H, YU S H, BAEK S H, et al. Directly integrated all-solid-state flexible lithium batteries on polymer substrate[J]. Journal of Power Sources, 2020, 455: 227978. |
18 | WANG S T, KRAVCHYK K V, FILIPPIN A N, et al. Aluminum chloride-graphite batteries with flexible current collectors prepared from earth-abundant elements[J]. Advanced Science, 2018, 5(4): 1700712. |
19 | YE Y S, HUANG W X, XU R, et al. Cold-starting all-solid-state batteries from room temperature by thermally modulated current collector in sub-minute[J]. Advanced Materials, 2022, 34(36): e2202848. |
20 | HU J Q, LI Y Z, LIAO S Y, et al. Ultralight and high thermal conductive current collector derived from polyimide for advanced LIBs[J]. ACS Applied Energy Materials, 2021, 4(9): 9721-9730. |
21 | COHEN E, MENKIN S, LIFSHITS M, et al. Novel rechargeable 3D-Microbatteries on 3D-printed-polymer substrates: Feasibility study[J]. Electrochimica Acta, 2018, 265: 690-701. |
22 | SARAKINOS K, ALAMI J, KONSTANTINIDIS S. High power pulsed magnetron sputtering: A review on scientific and engineering state of the art[J]. Surface and Coatings Technology, 2010, 204(11): 1661-1684. |
23 | 李柯, 许星海, 周宁, 等. C/LLZO复合隔膜的磁控溅射制备及其对多硫化物抑制效应[J]. 真空科学与技术学报, 2018, 38(8): 713-718. |
LI K, XU X H, ZHOU N, et al. Inhibition of polysulfide diffusion by modifying polypropylene separator with sputtered C/LLZO coatings[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(8): 713-718. | |
24 | ZHONG Z W, WANG J H. Uniformity and characterisation of PVD aluminium films[J]. Surface Engineering, 2005, 21(2): 119-124. |
25 | PAKHURUDDIN M Z, IBRAHIM K, AZIZ A A. Properties of aluminium thin films on polyethylene terephthalate substrates as back contacts in thin film silicon solar cells[J]. International Journal of Polymeric Materials, 2012, 61(9): 669-678. |
26 | ZAPOROJTCHENKO V, STRUNSKUS T, BEHNKE K, et al. Formation of metal-polymer interfaces by metal evaporation: Influence of deposition parameters and defects[J]. Microelectronic Engineering, 2000, 50(1/2/3/4): 465-471. |
27 | ZHOU M S, ZHANG W L, DING D Y, et al. The effect of pretreatment on adhesive strength of Cu-plated liquid crystal polymer (LCP)[J]. Applied Surface Science, 2012, 258(7): 2643-2647. |
28 | EE Y C, CHEN Z, CHAN L, et al. Effect of processing parameters on electroless Cu seed layer properties[J]. Thin Solid Films, 2004, 462/463: 197-201. |
29 | MUENCH F. Electroless plating of metal nanomaterials[J]. ChemElectroChem, 2021, 8(16): 2993-3012. |
30 | MAMLEYEV E R, FALK F, WEIDLER P G, et al. Polyaramid-based flexible antibacterial coatings fabricated using laser-induced carbonization and copper electroplating[J]. ACS Applied Materials & Interfaces, 2020, 12(47): 53193-53205. |
31 | WANG Y, NI L J, YANG F, et al. Facile preparation of a high-quality copper layer on epoxy resin via electroless plating for applications in electromagnetic interference shielding[J]. Journal of Materials Chemistry C, 2017, 5(48): 12769-12776. |
32 | FARAJ M, IBRAHIM K. Investigation of the structural properties of thermally evaporated aluminium thin films on different polymer substrates[J]. International Journal of Thin Films Science and Technology, 2015, 4: 27-30. |
33 | HAMASHA M M, ALZOUBI K, SWITZER J C, et al. A study on crack propagation and electrical resistance change of sputtered aluminum thin film on poly ethylene terephthalate substrate under stretching[J]. Thin Solid Films, 2011, 519(22): 7918-7924. |
[1] | Xiaoyu SHEN, Congbo YIN. SOH estimation of lithium-ion batteries using a convolutional Fastformer [J]. Energy Storage Science and Technology, 2024, 13(3): 990-999. |
[2] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. |
[3] | Meiling WU, Lei NIU, Shiyou LI, Dongni ZHAO. Research progress on cathode prelithium additives used in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 759-769. |
[4] | Xiaolei LI, Jian GAO, Weidong ZHOU, Hong LI. Application of COMSOL multiphysics in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 546-567. |
[5] | Ke PENG, Zhicheng ZHANG, Youzhang HU, Xuhui ZHANG, Jiahui ZHOU, Bin LI. Finite element-based motion analysis and optimization of sagger in thermo-mechanical coupling field [J]. Energy Storage Science and Technology, 2024, 13(2): 634-642. |
[6] | Qikai LEI, Yin YU, Peng PENG, Man CHEN, Kaiqiang JIN, Qingsong WANG. Effect of thermal insulation material layout on thermal runaway propagation inhibition effect of 280 Ah lithium-iron phosphate battery [J]. Energy Storage Science and Technology, 2024, 13(2): 495-502. |
[7] | Ke LI, Yifan HAO, Zhenhua FANG, Jing WANG, Songtong ZHANG, Xiayu ZHU, Jingyi QIU, Hai MING. Development and military application analysis of high-power chemical power supply system [J]. Energy Storage Science and Technology, 2024, 13(2): 436-461. |
[8] | Shuangming DUAN, Shengli ZHANG. Lithium-ion battery parameter identification based on adaptive multilayer RLS [J]. Energy Storage Science and Technology, 2024, 13(2): 712-720. |
[9] | Mengqiong SONG, Yu PENG, Ziqiang LIAO. Research on battery thermal management based on electrochemical model [J]. Energy Storage Science and Technology, 2024, 13(2): 578-585. |
[10] | Yuanming SONG, Yajie LIU, Guang JIN, Xing ZHOU, Xucheng HUANG. Review of energy management methods for lithium-ion battery/supercapacitor hybrid energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(2): 652-668. |
[11] | Xuejiao DAI, Jie YAN, Guan WANG, Haotian DONG, Danfeng JIANG, Zewei WEI, Fanxing MENG, Songtao LIU, Haitao ZHANG. Research progress of key materials for niobium-based low temperature batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 311-324. |
[12] | Hongyi LIANG, Feng CHEN, Youyi GAN, Dan SHAO. Characteristics of ternary cathode of lithium-ion power battery at low temperature [J]. Energy Storage Science and Technology, 2024, 13(1): 293-298. |
[13] | Ye XIAO, Lei XU, Chong YAN, Jiaqi HUANG. Design and application of reference electrodes for lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 82-91. |
[14] | Yayun LIAO, Feng ZHOU, Yingxi ZHANG, Tu'an LV, Yang HE, Xiaoyan CHEN, Kaifu HUO. Research progress on fast-charging graphite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 130-142. |
[15] | Xin JIN, Jianru ZHANG, Qiyu WANG, Rui ZHANG, Bitong WANG, Zhongyang ZHANG, Hailong YU, Xiqian YU, Hong LI. Study on thermal runaway of hybrid solid-liquid batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 48-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||