Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (1): 130-142.doi: 10.19799/j.cnki.2095-4239.2023.0777
Previous Articles Next Articles
Yayun LIAO1,2(), Feng ZHOU2, Yingxi ZHANG2, Tu'an LV2, Yang HE2, Xiaoyan CHEN2, Kaifu HUO2()
Received:
2023-10-31
Revised:
2023-11-15
Online:
2024-01-05
Published:
2024-01-22
Contact:
Kaifu HUO
E-mail:liaoyy20000702@163.com;kfhuo@hust.edu.cn
CLC Number:
Yayun LIAO, Feng ZHOU, Yingxi ZHANG, Tu'an LV, Yang HE, Xiaoyan CHEN, Kaifu HUO. Research progress on fast-charging graphite anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 130-142.
Fig. 2
Fast-charging graphite facing with the main challenge: (a) Li plating on the graphite anode at 100% DOD at 1 C[27]; (b) Voltage curves of graphite electrodes charged at the 2 C rate with or without local heating of the graphite electrode in coin cells[28]; (c) Li plating occurs on the surface of the high temperature area of the centrally heated graphite anode after fast charging[28]; (d) Li+ diffusion modes in graphite; (e) The concentration polarization diagram of the graphite electrode; (f) Photos of Li+ concentration distribution during the lithiating process of the graphite anode[35]"
Fig. 3
Structure design of fast-charging graphite anode: (a) Schematic diagram of preparation of acid-treated graphite and KOH etched graphite, with the increase of the spacing between the KOH etched graphite layers, the surface pores are generated to promote Li+ diffusion and improve its fast charging performance[39]; (b) Voltage curves of GFms composite electrode under different discharge current densities, when the current is increased from 0.2 C to 30 C, the capacity retention rate is as high as 92%[40]; (c) A magnetic field is applied to make the graphite particles perpendicular to the collector and schematic diagram of the Li+ diffusion path, the structure shortens the Li+ diffusion distance and increases the Li+ diffusion rate[46]"
Table 1
Comparison of structure designing strategies and electrochemical properties of graphite anode materials"
改性策略 | 具体措施 | 比容量/(mAh/g) | 容量保持率 | 引用 |
---|---|---|---|---|
结构设计 | 利用过氧化氢获得微膨胀层状球形石墨 | 188 (1 C) | — | [ |
采用热剥离制备开放式/半开放式孔结构的膨胀石墨 | 112 (3 A/g) | 500次循环后93 % (1 A/g) | [ | |
酸氧化和KOH蚀刻石墨 | 240 (0.6 A/g) | 1000次循环后96 % (1 A/g) | [ | |
利用中间相沥青制备多孔石墨泡沫(GFms) | 345.3 (30 C) | 50次循环后90.12% (1 C) | [ | |
KOH腐蚀获得具有纳米级孔隙结构的石墨 | — | 100次循环后96.7% (2.5 C) | [ | |
空气氧化制备多通道石墨 | — | 3000次循环后85% (6 C) | [ | |
带通孔的石墨片和CNTs组成的复合电极 | 220 (8 C) | 500次循环后90% (4 C) | [ | |
KOH高温蚀刻制备多通道结构石墨 | 125 (1 C) | 100次循环后74% (6 C) | [ | |
具有活化边缘的石墨 | 150.3 (10 C) | 700次循环后96.05% (5 C) | [ | |
施加磁场制备垂直排列的石墨负极 | 90 (2 C) | — | [ | |
采用激光测绘制备具有垂直多孔通道的3D石墨负极 | — | 600次循环后86% (6 C) | [ | |
在石墨表面生长垂直石墨烯薄片 | 105.4 (5 C) | — | [ |
Fig. 4
Chemical modification of graphite anode improves its charge-discharge performance: (a) Preparation process of SEAG, the electrode can achieve fast Li+ diffusion[56]; (b) Schematic diagram of synthesis of raw graphite and PTFE modified graphite, F doping is conducive to the fast Li+ diffusion in graphite[52]; (c) Rate performance of LNO and graphite half cells at 68—1360 mA/g, the LNO half cell rate performance has been significantly improved[58]"
Table 2
Comparison of chemical modification strategies and electrochemical properties of graphite anode materials"
改性策略 | 具体措施 | 比容量/(mAh/g) | 容量保持率 | 引用 |
---|---|---|---|---|
化学修饰 | Si/边缘活化石墨复合电极 | 525 (3 C) | 50次循环后99.3% (3 C) | [ |
硼酸球磨石墨 | 330 (5 C) | — | [ | |
聚四氟乙烯改性石墨 | 318 (0.186 A/g) | 60次循环后98.2% (0.1 C) | [ | |
N掺杂的空心结构石墨 | 305 (1 A/g) | 500次循环后98% (1 A/g) | [ | |
氯化钾与石墨混合制备掺K石墨 | 269.7 (1 C) | — | [ | |
石墨浆料中加入LNO制备掺F石墨 | 291.7 (0.68 A/g) | 200次循环后85.7% (0.34 A/g) | [ | |
利用H3PO4和H3BO3制备掺P、掺B石墨 | — | 掺P,掺B>95% (5 C/0.2 C) | [ |
Fig. 5
Fast-charging graphite anode surface coating: (a) Microstructure diagram of hard carbon coated graphite[63]; (b) TiO2-x @graphite core-shell structure,the TiO2-x coating helps to reduce the interface resistance between the electrode and the electrolyte[66]; (c) Rate performance of graphite coated with Al2O3 of different thickness at different current densities,graphite with 1% Al2O3 has a reversible capacity of about 337.1 mAh/gat the current density of 100 mA/g[67]; and (d) MoO x -MoP x / graphite anode material preparation process, both MoO x and nanoscale MoP x can effectively inhibit Li plating during fast charging[68]"
Table 3
Comparison of surface coating strategies and electrochemical properties of graphite anode materials"
改性策略 | 具体措施 | 比容量/(mAh/g) | 容量保持率 | 引用 |
---|---|---|---|---|
表面包覆 | 纳米级涡轮层状碳包覆石墨 | — | 300次循环后87% (0.17 A/g) | [ |
沥青包覆石墨 | 298 (5 C) | 83% (5 C/0.1 C) | [ | |
TiO2-x @石墨 | 345.2 (10 C) | 98.2% (5 C/0.2 C) | [ | |
Al2O3包覆石墨 | 327.7 (4 A/g) | 100次循环后97.2% (4 A/g) | [ | |
MoO x -MoP x /石墨 | 143.3 (6 C) | 100次循环后86% (6 C) | [ | |
SM包覆石墨 | — | 100次循环后72% (30 C) | [ | |
PVDF包覆石墨 | — | 200次循环后96.3% (0.5 C) | [ |
1 | 李泓. 未来的电池将朝着更高的比能量发展[R/OL]. [2022-03-31]. http://guoqing.china.com.cn/2022-03/31/content_78140922.htm. |
2 | ZENG X Q, LI M, ABD EL-HADY D, et al. Commercialization of lithium battery technologies for electric vehicles[J]. Advanced Energy Materials, 2019, 9(27): 1900161-1900185. |
3 | WANG G, YU M H, FENG X L. Carbon materials for ion-intercalation involved rechargeable battery technologies[J]. Chemical Society Reviews, 2021, 50(4): 2388-2443. |
4 | ZHANG Z, ZHAO D, XU Y, et al. A review on electrode materials of fast-charging lithium-ion batteries[J]. The Chemical Record, 2022, 22(10): e202200127-e202200143. |
5 | XIA H R, ZHANG W, CAO S K, et al. A figure of merit for fast-charging Li-ion battery materials[J]. ACS Nano, 2022, 16(6): 8525-8530. |
6 | USABC. USABC goals for low-cost / fast-charge advanced batteries for electric vehicles applications[R/OL]. [2022-12-20]. http://uscar.org/usabc/. |
7 | ZHU G L, ZHAO C Z, HUANG J Q, et al. Fast charging lithium batteries: Recent progress and future prospects[J]. Small, 2019, 15(15): e1805389. |
8 | BURNHAM A, DUFEK E J, STEPHENS T, et al. Enabling fast charging-Infrastructure and economic considerations[J]. Journal of Power Sources, 2017, 367: 237-249. |
9 | COLLIN R, MIAO Y, YOKOCHI A, et al. Advanced electric vehicle fast-charging technologies[J]. Energies, 2019, 12(10): 1839. |
10 | 柯承志, 肖本胜, 李苗, 等. 电极材料储锂行为及其机制的原位透射电镜研究进展[J]. 储能科学与技术, 2021, 10(4): 1219-1236. |
KE C Z, XIAO B S, LI M, et al. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy[J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. | |
11 | TOMASZEWSKA A, CHU Z Y, FENG X N, et al. Lithium-ion battery fast charging: A review[J]. eTransportation, 2019, 1: 100011. |
12 | WANG C Y, LIU T, YANG X G, et al. Fast charging of energy-dense lithium-ion batteries[J]. Nature, 2022, 611(7936): 485-490. |
13 | BABU B, SIMON P, BALDUCCI A. Fast charging materials for high power applications[J]. Advanced Energy Materials, 2020, 10(29): 2001128-2001161. |
14 | HE J H, MENG J K, HUANG Y H. Challenges and recent progress in fast-charging lithium-ion battery materials[J]. Journal of Power Sources, 2023. 570: 232965-232981. |
15 | HUANG Q K, NI S Y, JIAO M L, et al. Aligned carbon-based electrodes for fast-charging batteries: A review[J]. Small, 2021, 17(48): 2007676-2007701. |
16 | LIU Y Y, SHI H D, WU Z S. Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries[J]. Energy & Environmental Science, 2023, 16(11): 4834-4871. |
17 | WENG S T, YANG G J, ZHANG S M, et al. Kinetic limits of graphite anode for fast-charging lithium-ion batteries[J]. Nano-Micro Letters, 2023, 15(1): 215. |
18 | LIU Q Q, DU C Y, SHEN B, et al. Understanding undesirable anode lithium plating issues in lithium-ion batteries[J]. RSC Advances, 2016, 6(91): 88683-88700. |
19 | MAO C Y, RUTHER R E, LI J L, et al. Identifying the limiting electrode in lithium ion batteries for extreme fast charging[J]. Electrochemistry Communications, 2018, 97: 37-41. |
20 | YANG X G, WANG C Y. Understanding the trilemma of fast charging, energy density and cycle life of lithium-ion batteries[J]. Journal of Power Sources, 2018, 402: 489-498. |
21 | LI L, ZHANG D, DENG J P, et al. Carbon-based materials for fast charging lithium-ion batteries[J]. Carbon, 2021, 183: 721-734. |
22 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
23 | LIU Y Y, ZHU Y Y, CUI Y. Challenges and opportunities towards fast-charging battery materials[J]. Nature Energy, 2019, 4(7): 540-550. |
24 | HEUBNER C, NIKOLOWSKI K, REUBER S, et al. Recent insights into rate performance limitations of Li-ion batteries[J]. Batteries & Supercaps, 2021, 4(2): 268-285. |
25 | ZHANG S S. Challenges and strategies for fast charge of Li-ion batteries[J]. ChemElectroChem, 2020, 7(17): 3569-3577. |
26 | WEISS M, RUESS R, KASNATSCHEEW J, et al. Fast charging of lithium-ion batteries: A review of materials aspects[J]. Advanced Energy Materials, 2021, 11(33): 2101126-2101162. |
27 | HO A S, PARKINSON D Y, FINEGAN D P, et al. 3D detection of lithiation and lithium plating in graphite anodes during fast charging[J]. ACS Nano, 2021, 15(6): 10480-10487. |
28 | WANG H S, ZHU Y Y, KIM S C, et al. Underpotential lithium plating on graphite anodes caused by temperature heterogeneity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(47): 29453-29461. |
29 | YAO F, GÜNEŞ F, TA H Q, et al. Diffusion mechanism of lithium ion through basal plane of layered graphene[J]. Journal of the American Chemical Society, 2012, 134(20): 8646-8654. |
30 | SHI P C, LIN M, ZHENG H, et al. Effect of propylene carbonate-Li+ solvation structures on graphite exfoliation and its application in Li-ion batteries[J]. Electrochimica Acta, 2017, 247: 12-18. |
31 | ASENBAUER J, EISENMANN T, KUENZEL M, et al. The success story of graphite as a lithium-ion anode material-fundamentals, remaining challenges, and recent developments including silicon (oxide) composites[J]. Sustainable Energy & Fuels, 2020, 4(11): 5387-5416. |
32 | DIDIER C, PANG W K, GUO Z P, et al. Phase evolution and intermittent disorder in electrochemically lithiated graphite determined using in operando neutron diffraction[J]. Chemistry of Materials, 2020, 32(6): 2518-2531. |
33 | VETTER J, NOVÁK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147(1/2): 269-281. |
34 | GUO Y T, LI X H, GUO H J, et al. Visualization of concentration polarization in thick electrodes[J]. Energy Storage Materials, 2022, 51: 476-485. |
35 | YANG W, XIE H M, SHI B Q, et al. In-situ experimental measurements of lithium concentration distribution and strain field of graphite electrodes during electrochemical process[J]. Journal of Power Sources, 2019, 423: 174-182. |
36 | WAN J Y, XIE J, KONG X A, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nature Nanotechnology, 2019, 14(7): 705-711. |
37 | 郭德超, 曾燮榕, 邓飞, 等. 微膨石墨锂离子电池负极材料的制备及电化学性能[J]. 新型炭材料, 2015, 30(5): 419-424. |
GUO D C, ZENG X R, DENG F, et al. Preparation and electrochemical performance of expanded graphites as anode materials for a lithium-ion battery[J]. New Carbon Materials, 2015, 30(5): 419-424. | |
38 | SON D K, KIM J, RAJ M R, et al. Elucidating the structural redox behaviors of nanostructured expanded graphite anodes toward fast-charging and high-performance lithium-ion batteries[J]. Carbon, 2021, 175: 187-201. |
39 | KIM J, NITHYA JEGHAN S M, LEE G. Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries[J]. Microporous and Mesoporous Materials, 2020, 305: 110325. |
40 | LIM S, KIM J H, YAMADA Y, et al. Improvement of rate capability by graphite foam anode for Li secondary batteries[J]. Journal of Power Sources, 2017, 355: 164-170. |
41 | SHIM J H, LEE S H. Characterization of graphite etched with potassium hydroxide and its application in fast-rechargeable lithium ion batteries[J]. Journal of Power Sources, 2016, 324: 475-483. |
42 | CHENG Q A, ZHANG Y. Multi-channel graphite for high-rate lithium ion battery[J]. Journal of the Electrochemical Society, 2018, 165(5): A1104-A1109. |
43 | XU J, WANG X, YUAN N Y, et al. Graphite-based lithium ion battery with ultrafast charging and discharging and excellent low temperature performance[J]. Journal of Power Sources, 2019, 430: 74-79. |
44 | CHENG Q, YUGE R, NAKAHARA K, et al. KOH etched graphite for fast chargeable lithium-ion batteries[J]. Journal of Power Sources, 2015, 284: 258-263. |
45 | DU P, ZHANG B, CAO L, et al. Designed graphite with an activated edge for fast-charging lithium-ion storage properties[J]. Chemical Communications, 2022, 58(53): 7372-7375. |
46 | BILLAUD J, BOUVILLE F, MAGRINI T, et al. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries[J]. Nature Energy, 2016, 1: 16097. |
47 | CHEN K H, NAMKOONG M J, GOEL V, et al. Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures[J]. Journal of Power Sources, 2020, 471: 228475. |
48 | MU Y B, HAN M S, LI J Y, et al. Growing vertical graphene sheets on natural graphite for fast charging lithium-ion batteries[J]. Carbon, 2021, 173: 477-484. |
49 | LI S Q, WANG K, ZHANG G F, et al. Fast charging anode materials for lithium-ion batteries: Current status and perspectives[J]. Advanced Functional Materials, 2022, 32(23): 2200796-2200831. |
50 | CHEN X Y, ZHOU W, LIU J L, et al. Sulfur / nitrogen / oxygen tri-doped carbon nanospheres as an anode for potassium ion storage[J]. Journal of Energy Chemistry, 2023, 77: 338-347. |
51 | YEO J S, PARK T H, SEO M H, et al. Enhancement of the rate capability of graphite via the introduction of boron-oxygen functional groups[J]. International Journal of Electrochemical Science, 2013, 8(1): 1308-1315. |
52 | KANG S X, LUN H, QI Y X, et al. Boosted electrochemical performance of graphite anode enabled by polytetrafluoroethylene-derived F-doping[J]. Materials Chemistry and Physics, 2021, 261: 124214. |
53 | YANG X Y, ZHAN C Z, REN X L, et al. Nitrogen-doped hollow graphite granule as anode materials for high-performance lithium-ion batteries[J]. Journal of Solid State Chemistry, 2021, 303: 122500. |
54 | SHIM J, STRIEBEL K A. Electrochemical characterization of thermally oxidized natural graphite anodes in lithium-ion batteries[J]. Journal of Power Sources, 2007, 164(2): 862-867. |
55 | LIN Y X, HUANG Z H, YU X L, et al. Mildly expanded graphite for anode materials of lithium ion battery synthesized with perchloric acid[J]. Electrochimica Acta, 2014, 116: 170-174. |
56 | KIM N, CHAE S, MA J, et al. Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes[J]. Nature Communications, 2017, 8: 812. |
57 | WU Y, WANG L Y, LI Y F, et al. KCl-modified graphite as high performance anode material for lithium-ion batteries with excellent rate performance[J]. The Journal of Physical Chemistry C, 2017, 121(24): 13052-13058. |
58 | QI W B, BEN L B, YU H L, et al. Improving the electrochemical cycling performance of anode materials via facile in situ surface deposition of a solid electrolyte layer[J]. Journal of Power Sources, 2019, 424: 150-157. |
59 | PARK M S, LEE J, LEE J W, et al. Tuning the surface chemistry of natural graphite anode by H3PO4 and H3BO3 treatments for improving electrochemical and thermal properties[J]. Carbon, 2013, 62: 278-287. |
60 | IM U S, HWANG J U, YUN J H, et al. The effect of mild activation on the electrochemical performance of pitch-coated graphite for the lithium-ion battery anode material[J]. Materials Letters, 2020, 278: 128421. |
61 | WU Y S, WANG Y H, LEE Y H. Performance enhancement of spherical natural graphite by phenol resin in lithium ion batteries[J]. Journal of Alloys and Compounds, 2006, 426(1/2): 218-222. |
62 | LIN J H, CHEN C Y. Thickness-controllable coating on graphite surface as anode materials using glucose-based suspending solutions for lithium-ion battery[J]. Surface and Coatings Technology, 2022, 436: 128270. |
63 | LIM Y G, PARK J W, PARK M S, et al. Hard carbon-coated natural graphite electrodes for high-energy and power lithium-ion capacitors[J]. Bulletin of the Korean Chemical Society, 2015, 36(1): 150-155. |
64 | CAI W L, YAN C, YAO Y X, et al. Rapid lithium diffusion in Order@Disorder pathways for fast-charging graphite anodes[J]. Small Structures, 2020, 1(1): 2000010-2000015. |
65 | HAN Y J, KIM J, YEO J S, et al. Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: Effects of composition and softening points of coal tar pitch[J]. Carbon, 2015, 94: 432-438. |
66 | KIM D S, CHUNG D J, BAE J, et al. Surface engineering of graphite anode material with black TiO2- x for fast chargeable lithium ion battery[J]. Electrochimica Acta, 2017, 258: 336-342. |
67 | KIM D S, KIM Y E, KIM H. Improved fast charging capability of graphite anodes via amorphous Al2O3 coating for high power lithium ion batteries[J]. Journal of Power Sources, 2019, 422: 18-24. |
68 | LEE S M, KIM J, MOON J, et al. A cooperative biphasic MoOx-MoPx promoter enables a fast-charging lithium-ion battery[J]. Nature Communications, 2021, 12: 39. |
69 | SHI Q, LIU W J, QU Q T, et al. Robust solid/electrolyte interphase on graphite anode to suppress lithium inventory loss in lithium-ion batteries[J]. Carbon, 2017, 111: 291-298. |
70 | LUO J, WU C G, SU L Y, et al. A proof-of-concept graphite anode with a lithium dendrite suppressing polymer coating[J]. Journal of Power Sources, 2018, 406: 63-69. |
71 | HAN H, PARK H, KIL K C, et al. Microstructure control of the graphite anode with a high density for Li ion batteries with high energy density[J]. Electrochimica Acta, 2015, 166: 367-371. |
72 | CHEN K H, GOEL V, NAMKOONG M J, et al. Enabling 6 C fast charging of Li-ion batteries with graphite/hard carbon hybrid anodes[J]. Advanced Energy Materials, 2021, 11(5): 2003336-2003347. |
73 | 何月德, 刘洪波, 石磊, 等. 改性球形微晶石墨用作锂离子电池负极材料的研究[J]. 湖南大学学报(自然科学版), 2009, 36(11): 44-46, 61. |
HE Y D, LIU H B, SHI L, et al. Study on modified spherical microcrystalline graphite as anode materials for Li-ion batteries[J]. Journal of Hunan University (Natural Sciences), 2009, 36(11): 44-46, 61. | |
74 | 何月德, 刘洪波, 洪泉, 等. 酚醛树脂炭包覆对天然微晶石墨电化学性能的影响[J]. 功能材料, 2013, 44(16): 2397-2400, 2405. |
HE Y D, LIU H B, HONG Q, et al. Investigation on pyrolitic carbon-coated microcrystalline graphite as anode material for Li-ion batteries[J]. Journal of Functional Materials, 2013, 44(16): 2397-2400, 2405. | |
75 | SUN Y L, HAN F, ZHANG C Z, et al. FeCl3 intercalated microcrystalline graphite enables high volumetric capacity and good cycle stability for lithium-ion batteries[J]. Energy Technology, 2019, 7(4): 1801091-1801099. |
76 | HUANG P, LIU B, ZHANG J L, et al. Silicon/carbon composites based on natural microcrystalline graphite as anode for lithium-ion batteries[J]. Ionics, 2021, 27(5): 1957-1966. |
77 | 韩峰, 张春梅, 王剑秋.一种改性沥青包覆微晶石墨负极材料及其制备方法:CN115579470A.2023-01-06. |
HAN F, ZHANG C M, WANG J Q. A modified asphalt coated microcrystalline graphite anode material and its preparation method: CN115579470A.2023-01-06. | |
78 | 石磊, 邵浩明, 王志勇, 等.一种快充型微晶石墨负极材料及其制备方法:CN110395725B.2021-08-17. |
SHI L, SHAO H M, WANG Z Y, et al. A fast charging microcrystalline graphite anode material and its preparation method: CN110395725B.2021-08-17. | |
79 | 周海辉, 吴璇, 赖俊辉, 等.石墨负极材料、其制备方法和锂离子电池:CN111668480B.2023-07-28. |
ZHOU H H, WU X, LAI J H, et al. Graphite anode material, its preparation method,and lithium-ion battery: CN111668480B.2023-07-28. | |
80 | 周奇, 周晓航, 娄忠良.一种天然微晶石墨负极材料的制备方法及负极材料与应用:CN111115623B.2022-02-18. |
ZHOU Q, ZHOU X H, LOU L L. Preparation method and application of a natural microcrystalline graphite anode material: CN111115623B.2022-02-18. | |
81 | GUO H, WANG Z S, XING B L, et al. Carbon nanosheets prepared with a vermiculite template for high-performance lithium-ion batteries via space-confined carbonization strategy[J]. Journal of Alloys and Compounds, 2023, 933: 167721. |
82 | 周奇, 文博, 谢志勇. 微晶石墨改性用作锂离子电池负极材料[J]. 功能材料, 2023, 54(2): 2167-2173. |
ZHOU Q, WEN B, XIE Z Y. Microcrystalline graphite modified as lithium-ion battery anode material[J]. Journal of Functional Materials, 2023, 54(2): 2167-2173. |
[1] | Guobin ZHONG, Xin YAO, Yongchao LIU, Qian HOU, Hongfa XIANG. Challenges and prospects of high-safety composite separators for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1794-1806. |
[2] | Ziwei TANG, Yupu SHI, Yuchan ZHANG, Yibo ZHOU, Huiling DU. Prediction of lithium-ion battery capacity degradation trajectory based on Informer [J]. Energy Storage Science and Technology, 2024, 13(5): 1658-1666. |
[3] | Nana FENG, Ming YANG, Zhouli HUI, Ruijie WANG, Hongyang NING. Prediction of the remaining useful life of lithium batteries based on Antlion optimization Gaussian process regression [J]. Energy Storage Science and Technology, 2024, 13(5): 1643-1652. |
[4] | Gaoqi LIAN, Min YE, Qiao WANG, Yan LI, Yuchuan MA, Yiding SUN, Penghui DU. State-of-charge estimation of lithium-ion batteries in rapid temperature-varying environments based on improved battery model and optimized adaptive cubature Kalman filter [J]. Energy Storage Science and Technology, 2024, 13(5): 1667-1676. |
[5] | Xinbing XIE, Kaiyue YANG, Xiaozhong DU. Mechanical behavior and structure of lithium-ion battery electrode calendering process [J]. Energy Storage Science and Technology, 2024, 13(5): 1699-1706. |
[6] | Lin HE, Jiangyan LIU, Bin LIU, Kuining LI, Shuai DAI. Generalized impact of data distribution diversity on SOC prediction of lithium battery [J]. Energy Storage Science and Technology, 2024, 13(5): 1677-1687. |
[7] | Yalu HAN, Yige CHEN, Huifang DI, Jiehuan LIN, Zhenbing WANG, Yang ZHANG, Fangyuan SU, Chengmeng CHEN. Research progress on failure of lithium-ion batteries under different service conditions [J]. Energy Storage Science and Technology, 2024, 13(4): 1338-1349. |
[8] | Ge LI, Xiangdong KONG, Yuedong SUN, Fei CHEN, Yuebo YUAN, Xuebing HAN, Yuejiu ZHENG. Method for sorting the dynamic characteristics of lithium-ion battery consistency based on production line big data [J]. Energy Storage Science and Technology, 2024, 13(4): 1188-1196. |
[9] | Ruizi WANG, Xunliang LIU, Ruifeng DOU, Wenning ZHOU, Juan FANG. A comparative study on diffusion-induced stress and thermal stress during discharge of ternary soft pack lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(4): 1128-1141. |
[10] | Yuting WANG, Qiutong LI, Yiming HU, Xin GUO. Techniques for monitoring internal signals of lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1253-1265. |
[11] | Xiaoyu SHEN, Congbo YIN. SOH estimation of lithium-ion batteries using a convolutional Fastformer [J]. Energy Storage Science and Technology, 2024, 13(3): 990-999. |
[12] | Zhiguo ZHANG, Huaqing LI, Li WANG, Xiangming HE. Characteristics and preparation of metallized plastic current collectors for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 749-758. |
[13] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. |
[14] | Meiling WU, Lei NIU, Shiyou LI, Dongni ZHAO. Research progress on cathode prelithium additives used in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 759-769. |
[15] | Xiaolei LI, Jian GAO, Weidong ZHOU, Hong LI. Application of COMSOL multiphysics in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 546-567. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||