Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (3): 759-769.doi: 10.19799/j.cnki.2095-4239.2023.0809
• Energy Storage Materials and Devices • Previous Articles Next Articles
Meiling WU1,2(), Lei NIU1,2(), Shiyou LI1,2, Dongni ZHAO1,2
Received:
2023-11-10
Revised:
2023-12-05
Online:
2024-03-28
Published:
2024-03-28
Contact:
Lei NIU
E-mail:2977694112@qq.com;niulei@lut.deu.cn
CLC Number:
Meiling WU, Lei NIU, Shiyou LI, Dongni ZHAO. Research progress on cathode prelithium additives used in lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(3): 759-769.
Fig. 1
(a) Comparison of the normalized charging/discharging curves of LFP and Si-C (the discharge capacity of graphite is normalized to 1.08 according to the negative/positive (N/P) ratio used in the full cell)[4];(b) Annual distribution of prelithiation-related papers published and cited on the Web of Science from 2016 to 2021[5]"
Table 1
Summary of the performance of ternary Li-rich compound for various cathode materials"
Additive | Additive amount (质量分数) | Cathode | Full cell reversible capacity | Reversible capacity improvement after adding the additive | Capacity retention |
---|---|---|---|---|---|
Li2NiO2 | 4% | LiCoO2 | — | 8% | 87% after 250 cycles |
Li6CoO4 | 15% | LiCoO2 | 133 mAh/g | 73% | 约57% after 50 cycles |
Li5FeO4 | 7% | LiCoO2 | 144 mAh/gLCO-LFO 156 mAh/gLCO | 14% 24% | 95% after 50 cycles |
Li5FeO4 | 10% | LiNi0.5Co0.2Mn0.3O2 | 140.8 mAh/gLCM-LFO 154.9 mAh/gLCM | 11% 22% | 98.93% after 50 cycles |
Li8ZrO6 | 5% | LiNi0.5Mn1.5O4 | (107±3) mAh/gLNMO-LZO (112±3) mAh/gLNMO | 10% 15% | 87% after 50 cycles |
Table 2
Summary of the performance of binary lithium compounds for various cathode materials."
Additive | Additive amount | Cathode | Chargeing platform voltage | Theroetical capacity | Capacity improvement after adding the additive |
---|---|---|---|---|---|
Li2O | 20% | NCM | 4.5 V | 1000 mAh/g | 44% |
Li2O2 | 2% | NCM | 4.3 V | 1100 mAh/g | 20.5% |
Li3N | 2% | LiCoO2 | 0.9 V | 1400 mAh/g | 19% |
LiN3 | — | LiMn2O4 | 4.0 V | 567 mAh/g | — |
LiSe | 6% | LiFePO4 | 3.5~4.4 V | 559 mAh/g | 9% |
Li3P | 2.5% | LiFePO4 | 2.7 V | 1547 mAh/g | 10.2% |
Table 3
Summary of the performance of nanocomposites based on inverse conversion reaction for various cathode materials"
Additive | Additive amount | Cathode | Chargeing platform voltage | Theroetical capacity | Capacity improvement after adding the additive |
---|---|---|---|---|---|
Li2O/Co | 4.8% | LiFePO4 | — | 724 mAh/g | 12% |
Li2O/Fe | 7.5% | LiFePO4 | — | 799 mAh/g | 9.1% |
LiF/Co | 4.8% | LiFePO4 | 3.2~4.2 V | 520 mAh/g | 20% |
Li2S/Co | 4.8% | LiFePO4 | 2.0 V | 670 mAh/g | 5.6% |
Fe/LiF/Li2O | 4.8% | NCM | 3.1/3.8~4.5 V | 550 mAh/g | 15% |
1 | DING R Q, TIAN S Y, ZHANG K C, et al. Recent advances in cathode prelithiation additives and their use in lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2021, 893: 115325. |
2 | 朱亮, 严长青, 倪涛来. 锂离子电池预锂化技术的研究现状[J]. 电池, 2018, 48(3): 206-209. |
ZHU L, YAN C Q, NI T L. Research status quo of prelithiation technology for Li-ion battery[J]. Battery Bimonthly, 2018, 48(3): 206-209. | |
3 | 田孟羽, 詹元杰, 闫勇, 等. 锂离子电池补锂技术[J]. 储能科学与技术, 2021, 10(3): 800-812. |
TIAN M Y, ZHAN Y J, YAN Y, et al. Replenishment technology of the lithium ion battery[J]. Energy Storage Science and Technology, 2021, 10(3): 800-812. | |
4 | ZHAN Y J, YU H L, BEN L B, et al. Application of Li2S to compensate for loss of active lithium in a Si–C anode[J]. Journal of Materials Chemistry A, 2018, 6(15): 6206-6211. |
5 | LIU X M, WU Z, XIE L Q, et al. Prelithiation enhances cycling life of lithium-ion batteries: A mini review[J]. Energy \& Environmental Materials, 2023, 6(6): e12501. |
6 | 黄晓伟, 李少鹏, 张校刚. 负极补锂锂化裕度对电芯性能的影响及机理研究[J]. 储能科学与技术, 2023, 12(9): 2727-2734. |
HUANG X W, LI S P, ZHANG X G. Research on the impact and mechanism of the lithium replenishment degree of anode prelithiation on the performance of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(9): 2727-2734. | |
7 | 赵鹤, 韩策, 程小露, 等. 采用阳极预锂化技术的锂离子电池高倍率老化容量衰减机理研究[J]. 储能科学与技术, 2021, 10(2): 454-461. |
ZHAO H, HAN C, CHENG X L, et al. Research on the capacity fading mechanism of high rate aged lithium-ion batteries with anode prelithiation treatment[J]. Energy Storage Science and Technology, 2021, 10(2): 454-461. | |
8 | WANG F, WANG B, LI J X, et al. Prelithiation: A crucial strategy for boosting the practical application of next-generation lithium ion battery[J]. ACS Nano, 2021, 15(2): 2197-2218. |
9 | GABRIELLI G, MARINARO M, MANCINI M, et al. A new approach for compensating the irreversible capacity loss of high-energy Si/C|LiNi0.5Mn1.5O4 lithium-ion batteries[J]. Journal of Power Sources, 2017, 351: 35-44. |
10 | SONG Z H, FENG K, ZHANG H Z, et al. "Giving comes before receiving": High performance wide temperature range Li-ion battery with Li5V2(PO4)3 as both cathode material and extra Li donor[J]. Nano Energy, 2019, 66: 104175. |
11 | LIU G, ZHAO H, WANG Z H. Silicon oxide (SiO) anode enabled by a conductive polymer binder and performance enhancement by stabilized lithium metal power (SLMP): US20150364755[P]. 2015-12-17. |
12 | 余晨露, 田晓华, 张哲娟, 等. 锂离子电池硅基负极比容量提升的研究进展[J]. 储能科学与技术, 2020, 9(6): 1614-1628. |
YU C L, TIAN X H, ZHANG Z J, et al. Research progress of specific capacity improvements of silicon-based anodes in lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(6): 1614-1628. | |
13 | CAO M Y, LIU Z P, ZHANG X, et al. Feasibility of prelithiation in LiFePO4[J]. Advanced Functional Materials, 2023, 33(9): 2210032. |
14 | 詹元杰. 正极补锂材料及其在锂离子电池中的应用[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2018. |
ZHAN Y J. Adding sacrificial lithium compounds to cathode for compensation the first cycle capacity loss of Li-ion batteries[D]. Beijing: University of Chinese Academy of Sciences,2018. | |
15 | HUANG Z Y, DENG Z, ZHONG Y, et al. Progress and challenges of prelithiation technology for lithium-ion battery[J]. Carbon Energy, 2022, 4(6): 1107-1132. |
16 | MIN X Q, XU G J, XIE B, et al. Challenges of prelithiation strategies for next generation high energy lithium-ion batteries[J]. Energy Storage Materials, 2022, 47: 297-318. |
17 | 李子晨. 锂离子电池正极补锂添加剂的制备及其性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
LI Z C. Preparation and performance study of cathode prelithiation additive in lithium ion batteries[D].Harbin: Harbin Institute of Technology, 2020. | |
18 | HAN C G, ZHU C Y, SAITO G, et al. Enhanced cycling performance of surface-doped LiMn2O4 modified by a Li2CuO2-Li2NiO2 solid solution for rechargeable lithium-ion batteries[J]. Electrochimica Acta, 2017, 224: 71-79. |
19 | PARK H, YOON T, KIM Y U, et al. Li2NiO2 as a sacrificing positive additive for lithium-ion batteries[J]. Electrochimica Acta, 2013, 108: 591-595. |
20 | KIM M G, CHO J. Air stable Al2O3-coated Li2NiO2 cathode additive as a surplus current consumer in a Li-ion cell[J]. Journal of Materials Chemistry, 2008, 18(48): 5880-5887. |
21 | 曾林勇. 富锂化合物正极补锂添加剂的制备及电化学性能的研究[D]. 广州: 广东工业大学, 2022. |
ZENG L Y. Study on preparation and electrochemical performance of lithium-rich compound as positive electrode lithium supplement additive[D].Guangzhou: Guangdong University of Technology, 2022. | |
22 | SU X, LIN C K, WANG X P, et al. A new strategy to mitigate the initial capacity loss of lithium ion batteries[J]. Journal of Power Sources, 2016, 324: 150-157. |
23 | LI J, ZHU B, LI S H, et al. Air-stable Li6CoO4@Li5FeO4 pre-lithiation reagent in cathode enabling high performance lithium-ion batteries[J]. Journal of the Electrochemical Society, 2021, 168(8): 080510. |
24 | ZHANG L H, DOSE W M, VU A D, et al. Mitigating the initial capacity loss and improving the cycling stability of silicon monoxide using Li5FeO4[J]. Journal of Power Sources, 2018, 400: 549-555. |
25 | PARK K S, IM D, BENAYAD A, et al. LiFeO2-incorporated Li2MoO3 as a cathode additive for lithium-ion battery safety[J]. Chemistry of Materials, 2012, 24(14): 2673-2683. |
26 | NOH M, CHO J. Role of Li6CoO4 cathode additive in Li-ion cells containing low coulombic efficiency anode material[J]. Journal of the Electrochemical Society, 2012, 159(8): A1329-A1334. |
27 | KIM M, SPINDLER B D, DONG L F, et al. Li8ZrO6 as a pre-lithiation additive for lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(11): 14433-14444. |
28 | DIAZ-LOPEZ M, CHATER P A, BORDET P, et al. Li2O: Li–Mn–O disordered rock-salt nanocomposites as cathode prelithiation additives for high-energy density Li-ion batteries[J]. Advanced Energy Materials, 2020, 10(7): 1902788. |
29 | ABOUIMRANE A, CUI Y J, CHEN Z H, et al. Enabling high energy density Li-ion batteries through Li2O activation[J]. Nano Energy, 2016, 27: 196-201. |
30 | QIAO Y, YANG H J, CHANG Z, et al. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent[J]. Nature Energy, 2021, 6: 653-662. |
31 | PARK K, YU B C, GOODENOUGH J B. Li3N as a cathode additive for high-energy-density lithium-ion batteries[J]. Advanced Energy Materials, 2016, 6(10): 1502534. |
32 | SUN Y M, LI Y B, SUN J, et al. Stabilized Li3N for efficient battery cathode prelithiation[J]. Energy Storage Materials, 2017, 6: 119-124. |
33 | SHANMUKARAJ D, GRUGEON S, LARUELLE S, et al. Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries[J]. Electrochemistry Communications, 2010, 12(10): 1344-1347. |
34 | FU Y P, XIE Y, ZENG L Y, et al. Li2Se as cathode additive to prolong the next generation high energy lithium-ion batteries[J]. Surfaces and Interfaces, 2023, 36: 102610. |
35 | PAN Y, QI X, DU H, et al. Li2Se as a cathode prelithiation additive for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(15): 18763-18770. |
36 | WANG X Y, LIU C, ZHANG S J, et al. Dual-functional cathodic prelithiation reagent of Li3P in lithium-ion battery for compensating initial capacity loss and enhancing safety[J]. ACS Applied Energy Materials, 2021, 4(5): 5246-5254. |
37 | SUN Y M, LEE H W, SEH Z W, et al. High-capacity battery cathode prelithiation to offset initial lithium loss[J]. Nature Energy, 2016, 1(1): 15008. |
38 | ZHENG L Y, YU A S, LI G, et al. High-energy-density and long-lifetime lithium-ion battery enabled by a stabilized Li2O2 cathode prelithiation additive[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 38706-38716. |
39 | ZHENG J S, LIANG K, SHI K Y, et al. In situ synthesis and electrochemical properties of Fe/Li2O as a high-capacity cathode prelithiation additive for lithium ion batteries[J]. International Journal of Electrochemical Science, 2019, 14(6): 5305-5316. |
40 | SUN Y M, LEE H W, ZHENG G Y, et al. In situ chemical synthesis of lithium fluoride/metal nanocomposite for high capacity prelithiation of cathodes[J]. Nano Letters, 2016, 16(2): 1497-1501. |
41 | ZHAN Y J, YU H L, BEN L B, et al. Using Li2S to compensate for the loss of active lithium in Li-ion batteries[J]. Electrochimica Acta, 2017, 255: 212-219. |
42 | SUN Y M, LEE H W, SEH Z W, et al. Lithium sulfide/metal nanocomposite as a high-capacity cathode prelithiation material[J]. Advanced Energy Materials, 2016, 6(12): 1600154. |
43 | DU J M, WANG W Y, ENG A Y S, et al. Metal/LiF/Li2O nanocomposite for battery cathode prelithiation: Trade-off between capacity and stability[J]. Nano Letters, 2020, 20(1): 546-552. |
[1] | Xiaoyu SHEN, Congbo YIN. SOH estimation of lithium-ion batteries using a convolutional Fastformer [J]. Energy Storage Science and Technology, 2024, 13(3): 990-999. |
[2] | Zhiguo ZHANG, Huaqing LI, Li WANG, Xiangming HE. Characteristics and preparation of metallized plastic current collectors for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 749-758. |
[3] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. |
[4] | Yuanming SONG, Yajie LIU, Guang JIN, Xing ZHOU, Xucheng HUANG. Review of energy management methods for lithium-ion battery/supercapacitor hybrid energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(2): 652-668. |
[5] | Xiaolei LI, Jian GAO, Weidong ZHOU, Hong LI. Application of COMSOL multiphysics in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 546-567. |
[6] | Ke PENG, Zhicheng ZHANG, Youzhang HU, Xuhui ZHANG, Jiahui ZHOU, Bin LI. Finite element-based motion analysis and optimization of sagger in thermo-mechanical coupling field [J]. Energy Storage Science and Technology, 2024, 13(2): 634-642. |
[7] | Qikai LEI, Yin YU, Peng PENG, Man CHEN, Kaiqiang JIN, Qingsong WANG. Effect of thermal insulation material layout on thermal runaway propagation inhibition effect of 280 Ah lithium-iron phosphate battery [J]. Energy Storage Science and Technology, 2024, 13(2): 495-502. |
[8] | Ke LI, Yifan HAO, Zhenhua FANG, Jing WANG, Songtong ZHANG, Xiayu ZHU, Jingyi QIU, Hai MING. Development and military application analysis of high-power chemical power supply system [J]. Energy Storage Science and Technology, 2024, 13(2): 436-461. |
[9] | Shuangming DUAN, Shengli ZHANG. Lithium-ion battery parameter identification based on adaptive multilayer RLS [J]. Energy Storage Science and Technology, 2024, 13(2): 712-720. |
[10] | Mengqiong SONG, Yu PENG, Ziqiang LIAO. Research on battery thermal management based on electrochemical model [J]. Energy Storage Science and Technology, 2024, 13(2): 578-585. |
[11] | Xuejiao DAI, Jie YAN, Guan WANG, Haotian DONG, Danfeng JIANG, Zewei WEI, Fanxing MENG, Songtao LIU, Haitao ZHANG. Research progress of key materials for niobium-based low temperature batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 311-324. |
[12] | Hongyi LIANG, Feng CHEN, Youyi GAN, Dan SHAO. Characteristics of ternary cathode of lithium-ion power battery at low temperature [J]. Energy Storage Science and Technology, 2024, 13(1): 293-298. |
[13] | Ye XIAO, Lei XU, Chong YAN, Jiaqi HUANG. Design and application of reference electrodes for lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 82-91. |
[14] | Yayun LIAO, Feng ZHOU, Yingxi ZHANG, Tu'an LV, Yang HE, Xiaoyan CHEN, Kaifu HUO. Research progress on fast-charging graphite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 130-142. |
[15] | Xin JIN, Jianru ZHANG, Qiyu WANG, Rui ZHANG, Bitong WANG, Zhongyang ZHANG, Hailong YU, Xiqian YU, Hong LI. Study on thermal runaway of hybrid solid-liquid batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 48-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||