Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (3): 990-999.doi: 10.19799/j.cnki.2095-4239.2023.0735
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Received:
2023-10-19
Revised:
2023-10-24
Online:
2024-03-28
Published:
2024-03-28
Contact:
Congbo YIN
E-mail:807101906@qq.com;250114287@qq.com
CLC Number:
Xiaoyu SHEN, Congbo YIN. SOH estimation of lithium-ion batteries using a convolutional Fastformer[J]. Energy Storage Science and Technology, 2024, 13(3): 990-999.
1 | ZHANG Y, LI Y F. Prognostics and health management of Lithium-ion battery using deep learning methods: A review[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112282. |
2 | TIAN J Q, LIU X H, LI S Q, et al. Lithium-ion battery health estimation with real-world data for electric vehicles[J]. Energy, 2023, 270: 126855. |
3 | LIN M Q, WU D G, MENG J H, et al. Health prognosis for lithium-ion battery with multi-feature optimization[J]. Energy, 2023, 264: 126307. |
4 | SHAO J Y, LI J F, YUAN W Z, et al. A novel method of discharge capacity prediction based on simplified electrochemical model-aging mechanism for lithium-ion batteries[J]. Journal of Energy Storage, 2023, 61: 106788. |
5 | YANG L, CAI Y S, YANG Y X, et al. Supervisory long-term prediction of state of available power for lithium-ion batteries in electric vehicles[J]. Applied Energy, 2020, 257: 114006. |
6 | KIM S, PARK H J, CHOI J H, et al. A novel prognostics approach using shifting kernel particle filter of Li-ion batteries under state changes[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 3485-3493. |
7 | ZHANG Y H, YANG Y, XIU X C, et al. A remaining useful life prediction method in the early stage of stochastic degradation process[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(6): 2027-2031. |
8 | DONG G Z, HAN W J, WANG Y J. Dynamic Bayesian network-based lithium-ion battery health prognosis for electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2021, 68(11): 10949-10958. |
9 | LIU K L, SHANG Y L, OUYANG Q, et al. A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 3170-3180. |
10 | GOH H H, LAN Z T, ZHANG D D, et al. Estimation of the state of health (SOH) of batteries using discrete curvature feature extraction[J]. Journal of Energy Storage, 2022, 50: 104646. |
11 | XING L K, LIU X, LUO W F, et al. State of health estimation for lithium-ion batteries using IAO–SVR[J]. World Electric Vehicle Journal, 2023, 14(5): 122. |
12 | WANG S L, FERNANDEZ C, YU C M, et al. A novel charged state prediction method of the lithium ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm[J]. Journal of Power Sources, 2020, 471: 228450. |
13 | CHEN Z, XUE Q, WU Y T, et al. Capacity prediction and validation of lithium-ion batteries based on long short-term memory recurrent neural network[J]. IEEE Access, 2020, 8: 172783-172798. |
14 | 高德欣, 刘欣, 杨清. 基于卷积神经网络与双向长短时融合的锂离子电池剩余使用寿命预测[J]. 信息与控制, 2022, 51(3): 318-329, 360. |
GAO D X, LIU X, YANG Q. Remaining useful life prediction of lithium-ion battery based on CNN and BiLSTM fusion[J]. Information and Control, 2022, 51(3): 318-329, 360. | |
15 | 陈锐, 丁凯, 祖连兴, 等. 基于AED-CEEMD-Transformer的锂离子电池健康状态估计[J]. 储能科学与技术, 2023, 12(10): 3242-3253. |
CHEN R, DING K, ZU L X, et al. Prediction of state of health of lithium-ion batteries based on the AED-CEEMD-Transformer network[J]. Energy Storage Science and Technology, 2023, 12(10): 3242-3253. | |
16 | LIN Z C, HU H P, LIU W, et al. State of health estimation of lithium-ion batteries based on remaining area capacity[J]. Journal of Energy Storage, 2023, 63: 107078. |
17 | KONG J Z, YANG F F, ZHANG X, et al. Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries[J]. Energy, 2021, 223: 120114. |
18 | JIA J F, LIANG J Y, SHI Y H, et al. SOH and RUL prediction of lithium-ion batteries based on Gaussian process regression with indirect health indicators[J]. Energies, 2020, 13(2): 375. |
19 | ROMAN D, SAXENA S, ROBU V, et al. Machine learning pipeline for battery state-of-health estimation[J]. Nature Machine Intelligence, 2021, 3: 447-456. |
20 | ZHU J G, WANG Y X, HUANG Y, et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation[J]. Nature Communications, 2022, 13: 2261. |
21 | WU C H, WU F Z, QI T, et al. Fastformer: Additive attention can be all you need[J]. ArXiv e-Prints, 2021: arXiv: . |
22 | SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4: 383-391. |
23 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. December 4 - 9, 2017, Long Beach, California, USA. ACM, 2017: 6000–6010. |
24 | 徐建民, 郭紫芯, 肖涛, 等.基于正交试验的水平换热器充气模拟实验研究[J]. 化学工程与装备, 2023(9): 10-12, 16. |
XU J M, GUO Z X,XIAO T, et al. Experimental study on air-simulated level heat exchanger based on orthogonal experiment[J]. Chemical Engineering and Equipment, 2023(9): 10-12, 16. |
[1] | Zhiguo ZHANG, Huaqing LI, Li WANG, Xiangming HE. Characteristics and preparation of metallized plastic current collectors for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 749-758. |
[2] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. |
[3] | Meiling WU, Lei NIU, Shiyou LI, Dongni ZHAO. Research progress on cathode prelithium additives used in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 759-769. |
[4] | Yuanming SONG, Yajie LIU, Guang JIN, Xing ZHOU, Xucheng HUANG. Review of energy management methods for lithium-ion battery/supercapacitor hybrid energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(2): 652-668. |
[5] | Xiaolei LI, Jian GAO, Weidong ZHOU, Hong LI. Application of COMSOL multiphysics in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 546-567. |
[6] | Ke PENG, Zhicheng ZHANG, Youzhang HU, Xuhui ZHANG, Jiahui ZHOU, Bin LI. Finite element-based motion analysis and optimization of sagger in thermo-mechanical coupling field [J]. Energy Storage Science and Technology, 2024, 13(2): 634-642. |
[7] | Qikai LEI, Yin YU, Peng PENG, Man CHEN, Kaiqiang JIN, Qingsong WANG. Effect of thermal insulation material layout on thermal runaway propagation inhibition effect of 280 Ah lithium-iron phosphate battery [J]. Energy Storage Science and Technology, 2024, 13(2): 495-502. |
[8] | Ke LI, Yifan HAO, Zhenhua FANG, Jing WANG, Songtong ZHANG, Xiayu ZHU, Jingyi QIU, Hai MING. Development and military application analysis of high-power chemical power supply system [J]. Energy Storage Science and Technology, 2024, 13(2): 436-461. |
[9] | Shuangming DUAN, Shengli ZHANG. Lithium-ion battery parameter identification based on adaptive multilayer RLS [J]. Energy Storage Science and Technology, 2024, 13(2): 712-720. |
[10] | Mengqiong SONG, Yu PENG, Ziqiang LIAO. Research on battery thermal management based on electrochemical model [J]. Energy Storage Science and Technology, 2024, 13(2): 578-585. |
[11] | Xuejiao DAI, Jie YAN, Guan WANG, Haotian DONG, Danfeng JIANG, Zewei WEI, Fanxing MENG, Songtao LIU, Haitao ZHANG. Research progress of key materials for niobium-based low temperature batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 311-324. |
[12] | Hongyi LIANG, Feng CHEN, Youyi GAN, Dan SHAO. Characteristics of ternary cathode of lithium-ion power battery at low temperature [J]. Energy Storage Science and Technology, 2024, 13(1): 293-298. |
[13] | Ye XIAO, Lei XU, Chong YAN, Jiaqi HUANG. Design and application of reference electrodes for lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 82-91. |
[14] | Yayun LIAO, Feng ZHOU, Yingxi ZHANG, Tu'an LV, Yang HE, Xiaoyan CHEN, Kaifu HUO. Research progress on fast-charging graphite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 130-142. |
[15] | Xin JIN, Jianru ZHANG, Qiyu WANG, Rui ZHANG, Bitong WANG, Zhongyang ZHANG, Hailong YU, Xiqian YU, Hong LI. Study on thermal runaway of hybrid solid-liquid batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 48-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||