Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (5): 1667-1676.doi: 10.19799/j.cnki.2095-4239.2023.0869
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Gaoqi LIAN1(), Min YE1(), Qiao WANG1,2, Yan LI1, Yuchuan MA1, Yiding SUN1, Penghui DU1
Received:
2023-12-01
Revised:
2023-12-18
Online:
2024-05-28
Published:
2024-05-28
Contact:
Min YE
E-mail:gaoqi@chd.edu.cn;mingye@chd.edu.cn
CLC Number:
Gaoqi LIAN, Min YE, Qiao WANG, Yan LI, Yuchuan MA, Yiding SUN, Penghui DU. State-of-charge estimation of lithium-ion batteries in rapid temperature-varying environments based on improved battery model and optimized adaptive cubature Kalman filter[J]. Energy Storage Science and Technology, 2024, 13(5): 1667-1676.
Table 3
SOC estimation error evaluation results and comparative analysis under six operating conditions in rapidly varying temperature environments"
工况 | RMSE/% | MAE/% | ||||||
---|---|---|---|---|---|---|---|---|
方案1 | 方案2 | 方案3 | 方案4 | 方案1 | 方案2 | 方案3 | 方案4 | |
FUDS | 2.37 | 2.89 | 0.41 | 0.74 | 1.83 | 2.14 | 0.04 | 0.09 |
UDDS | 2.9 | 2.57 | 0.33 | 0.35 | 2.48 | 2.99 | 0.12 | 0.16 |
混合1 | 4.87 | 3.76 | 0.9 | 1.29 | 3.93 | 2.81 | 0.28 | 0.43 |
BJDST | 2.47 | 2.77 | 0.55 | 1.14 | 1.88 | 2.24 | 0.38 | 0.43 |
US03 | 1.65 | 1.93 | 0.18 | 0.28 | 1.37 | 1.48 | 0.04 | 0.2 |
混合2 | 2.32 | 2.69 | 0.28 | 0.32 | 1.62 | 1.99 | 0.2 | 0.25 |
1 | WEI Z B, HU J, LI Y, et al. Hierarchical soft measurement of load current and state of charge for future smart lithium-ion batteries[J]. Applied Energy, 2022, 307: 118246. |
2 | WANG Q, YE M, CAI X, et al. Transferable data-driven capacity estimation for lithium-ion batteries with deep learning: A case study from laboratory to field applications[J]. Applied Energy, 2023, 350: 121747. |
3 | MA Y C, WANG Q, YE M, et al. Robust control for the hybrid energy system of an electric loader[J]. Machines, 2023, 11(4): 454. |
4 | BAI H Y, SONG Z Y. Lithium-ion battery, sodium-ion battery, or redox-flow battery: A comprehensive comparison in renewable energy systems[J]. Journal of Power Sources, 2023, 580: 233426. |
5 | WEI M, YE M, ZHANG C W, et al. A multi-scale learning approach for remaining useful life prediction of lithium-ion batteries based on variational mode decomposition and Monte Carlo sampling[J]. Energy, 2023, 283: 129086. |
6 | 申江卫, 高承志, 舒星, 等. 基于迁移模型的锂离子电池宽温度全寿命SOC与可用容量联合估计[J]. 电工技术学报, 2023, 38(11): 3052-3063. |
SHEN J W, GAO C Z, SHU X, et al. Joint estimation of SOC and usable capacity of lithium-ion battery with wide temperature and full life based on migration model[J]. Transactions of China Electrotechnical Society, 2023, 38(11): 3052-3063. | |
7 | 谢翌, 江迪生, 张扬军, 等. 新能源汽车锂离子电池组SOC-SOP联合估计算法[J]. 汽车安全与节能学报, 2022, 13(3): 580-589. |
XIE Y, JIANG D S, ZHANG Y J, et al. Joint estimation algorithm of SOC-SOP for lithium-ion battery pack in new energy vehicles[J]. Journal of Automotive Safety and Energy, 2022, 13(3): 580-589. | |
8 | 黎冲, 王成辉, 王高, 等. 锂电池SOC估计的实现方法分析与性能对比[J]. 储能科学与技术, 2022, 11(10): 3328-3344. |
LI C, WANG C H, WANG G, et al. Review on implementation method analysis and performance comparison of lithium battery state of charge estimation[J]. Energy Storage Science and Technology, 2022, 11(10): 3328-3344. | |
9 | 付诗意, 吕桃林, 闵凡奇, 等. 电动汽车用锂离子电池SOC估算方法综述[J]. 储能科学与技术, 2021, 10(3): 1127-1136. |
FU S Y, LYU T L, MIN F Q, et al. Review of estimation methods on SOC of lithium-ion batteries in electric vehicles[J]. Energy Storage Science and Technology, 2021, 10(3): 1127-1136. | |
10 | WEI Z B, DONG G Z, ZHANG X N, et al. Noise-immune model identification and state-of-charge estimation for lithium-ion battery using bilinear parameterization[J]. IEEE Transactions on Industrial Electronics, 2021, 68(1): 312-323. |
11 | TANG R L, ZHANG S H, ZHANG S Y, et al. Model parameter identification for lithium-ion batteries using adaptive multi-context cooperatively co-evolutionary parallel differential evolution algorithm[J]. Journal of Energy Storage, 2023, 58: 106432. |
12 | LI W, XIE Y, LIU K L, et al. An enhanced thermal model with virtual resistance technique for pouch batteries at low temperature and high current rates[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 44-56. |
13 | 武龙星, 庞辉, 晋佳敏, 等. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7): 1703-1725. |
WU L X, PANG H, JIN J M, et al. A review of SOC estimation methods for lithium-ion batteries based on electrochemical model[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1703-1725. | |
14 | 庞辉, 郭龙, 武龙星, 等. 考虑环境温度影响的锂离子电池改进双极化模型及其荷电状态估算[J]. 电工技术学报, 2021, 36(10): 2178-2189. |
PANG H, GUO L, WU L X, et al. An improved dual polarization model of Li-ion battery and its state of charge estimation considering ambient temperature[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2178-2189. | |
15 | LAI X, WANG S Y, HE L, et al. A hybrid state-of-charge estimation method based on credible increment for electric vehicle applications with large sensor and model errors[J]. Journal of Energy Storage, 2020, 27: 101106. |
16 | 申江卫, 周灿彪, 舒星, 等. 宽温度环境下基于改进电化学模型的锂电池荷电状态估计[J]. 储能科学与技术, 2023, 12(9): 2904-2916. |
SHEN J W, ZHOU C B, SHU X, et al. State of charge estimation for lithium batteries based on an improved electrochemical model at a wide temperature environment[J]. Energy Storage Science and Technology, 2023, 12(9): 2904-2916. | |
17 | XIONG R, HUANG J T, DUAN Y Z, et al. Enhanced Lithium-ion battery model considering critical surface charge behavior[J]. Applied Energy, 2022, 314: 118915. |
18 | CUI Z H, KANG L, LI L W, et al. A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF[J]. Energy, 2022, 259: 124933. |
19 | HE H W, ZHAO X Y, LI J W, et al. Voltage abnormality-based fault diagnosis for batteries in electric buses with a self-adapting update model[J]. Journal of Energy Storage, 2022, 53: 105074. |
20 | LIAN G Q, YE M, WANG Q, et al. Noise-immune state of charge estimation for lithium-ion batteries based on optimized dynamic model and improved adaptive unscented Kalman filter under wide. |
[1] | Ziwei TANG, Yupu SHI, Yuchan ZHANG, Yibo ZHOU, Huiling DU. Prediction of lithium-ion battery capacity degradation trajectory based on Informer [J]. Energy Storage Science and Technology, 2024, 13(5): 1658-1666. |
[2] | Nana FENG, Ming YANG, Zhouli HUI, Ruijie WANG, Hongyang NING. Prediction of the remaining useful life of lithium batteries based on Antlion optimization Gaussian process regression [J]. Energy Storage Science and Technology, 2024, 13(5): 1643-1652. |
[3] | Xinbing XIE, Kaiyue YANG, Xiaozhong DU. Mechanical behavior and structure of lithium-ion battery electrode calendering process [J]. Energy Storage Science and Technology, 2024, 13(5): 1699-1706. |
[4] | Lin HE, Jiangyan LIU, Bin LIU, Kuining LI, Shuai DAI. Generalized impact of data distribution diversity on SOC prediction of lithium battery [J]. Energy Storage Science and Technology, 2024, 13(5): 1677-1687. |
[5] | Yalu HAN, Yige CHEN, Huifang DI, Jiehuan LIN, Zhenbing WANG, Yang ZHANG, Fangyuan SU, Chengmeng CHEN. Research progress on failure of lithium-ion batteries under different service conditions [J]. Energy Storage Science and Technology, 2024, 13(4): 1338-1349. |
[6] | Ge LI, Xiangdong KONG, Yuedong SUN, Fei CHEN, Yuebo YUAN, Xuebing HAN, Yuejiu ZHENG. Method for sorting the dynamic characteristics of lithium-ion battery consistency based on production line big data [J]. Energy Storage Science and Technology, 2024, 13(4): 1188-1196. |
[7] | Ruizi WANG, Xunliang LIU, Ruifeng DOU, Wenning ZHOU, Juan FANG. A comparative study on diffusion-induced stress and thermal stress during discharge of ternary soft pack lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(4): 1128-1141. |
[8] | Yuting WANG, Qiutong LI, Yiming HU, Xin GUO. Techniques for monitoring internal signals of lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1253-1265. |
[9] | Aifang ZHANG, Bangda WEI, Zhuohao LI, Yang YANG, Tianqiang YANG, Jun YAO, Jie ZHANG, Fei LIU, Haomiao LI, Kangli WANG, Kai JIANG. Research progress on modeling and SOC online estimation of vanadium redox-flow batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 1036-1049. |
[10] | Xiaoyu SHEN, Congbo YIN. SOH estimation of lithium-ion batteries using a convolutional Fastformer [J]. Energy Storage Science and Technology, 2024, 13(3): 990-999. |
[11] | Zhiguo ZHANG, Huaqing LI, Li WANG, Xiangming HE. Characteristics and preparation of metallized plastic current collectors for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 749-758. |
[12] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. |
[13] | Meiling WU, Lei NIU, Shiyou LI, Dongni ZHAO. Research progress on cathode prelithium additives used in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 759-769. |
[14] | Xiaolei LI, Jian GAO, Weidong ZHOU, Hong LI. Application of COMSOL multiphysics in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 546-567. |
[15] | Ke PENG, Zhicheng ZHANG, Youzhang HU, Xuhui ZHANG, Jiahui ZHOU, Bin LI. Finite element-based motion analysis and optimization of sagger in thermo-mechanical coupling field [J]. Energy Storage Science and Technology, 2024, 13(2): 634-642. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||