Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (3): 1036-1049.doi: 10.19799/j.cnki.2095-4239.2023.0734
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Aifang ZHANG1(), Bangda WEI2, Zhuohao LI2, Yang YANG1, Tianqiang YANG2, Jun YAO1, Jie ZHANG1, Fei LIU1, Haomiao LI2(), Kangli WANG2, Kai JIANG2
Received:
2023-10-17
Revised:
2023-11-01
Online:
2024-03-28
Published:
2024-03-28
Contact:
Haomiao LI
E-mail:128196188@qq.com;lihm@hust.edu.cn
CLC Number:
Aifang ZHANG, Bangda WEI, Zhuohao LI, Yang YANG, Tianqiang YANG, Jun YAO, Jie ZHANG, Fei LIU, Haomiao LI, Kangli WANG, Kai JIANG. Research progress on modeling and SOC online estimation of vanadium redox-flow batteries[J]. Energy Storage Science and Technology, 2024, 13(3): 1036-1049.
Table 1
Comparison of VRFB equivalent circuit models"
模型 | 原理图 | 建模时重点关注问题 | 优缺点及应用场景 |
---|---|---|---|
Thevenin模型 | 考虑了极化效应, | 模型简单,参数较少,易于做参数辨识;无法进行更精确的分析[ | |
PNGV模型 | 考虑了电池的动态响应过程、极化效应和电流累积效应 | 模型结构较为简单;比较适用于分析电池工作时电流、电压变化的情形,不适用于电池稳定充放电的情形[ | |
交流阻抗模型 | 根据电池的交流阻抗谱进行建模分析[ | 模型较为简单,易于搭建,能有效反映VRFB的充放电特性[ | |
等效损耗模型 | 考虑了VRFB充放电过程中产生的各种损耗和系统的瞬态响应 | 结构简单、计算方便、仿真速度快,重点关注了VRFB的充放电特性[ | |
基于电化学机理的改进等效电路模型 | 考虑了浓差极化、电化学极化和泵损对输出端电压的影响[ | 模型较为复杂,参数较多,不易进行参数辨识[ | |
电热耦合模型 | 考虑了电化学行为和热行为之间的耦合效应,使用三阶考尔网络对VRFB系统中的传热过程进行建模,充分考虑了热效应 | 模型复杂,参数较多,耦合了电路模型和热力学模型,不便于进行建模和参数辨识[ | |
分数阶模型 | VRFB被模拟为一个欧姆内阻和两个串联的半电池,考虑了VRFB的阻抗变化 | 模型较为复杂,不便于参数辨识,但可用于研究VRFB在可变充放电功率情况下的动态响应[ |
Table 2
SOC estimation method based on filtering algorithms"
SOC统计方法 | 优点 | 缺点 |
---|---|---|
EKF | 计算效率高,应用广泛,适应测量噪声和过程噪声 | 线性化误差大,对初值敏感,不适用于高维空间 |
UKF | 无需手动线性化,避免协方差不正定,鲁棒性强 | 不适用于高维空间,需要调节参数,易发散 |
SR-UKF | 避免协方差不正定,数值稳定性好 | 计算复杂,需要调节参数,适用范围小 |
AEKF | 适应性强,鲁棒性强,线性误差小 | 需要调节参数,对初值敏感,适用范围小 |
SRCQKF | 避免协方差不正定,更稳定,线性误差小 | 计算复杂,适用范围小 |
STEKF | 可调整协方差矩阵,跟踪性能强,数值稳定性好 | 计算复杂,适用范围小 |
1 | GRÄF D, MARSCHEWSKI J, IBING L, et al. What drives capacity degradation in utility-scale battery energy storage systems? The impact of operating strategy and temperature in different grid applications[J]. Journal of Energy Storage, 2022, 47: 103533. |
2 | 李建林, 张则栋, 李雅欣, 等. 碳中和目标下移动式储能系统关键技术[J]. 储能科学与技术, 2022, 11(5): 1523-1536. |
LI J L, ZHANG Z D, LI Y X, et al. Research on key technologies of mobile energy storage system under the target of carbon neutrality[J]. Energy Storage Science and Technology, 2022, 11(5): 1523-1536. | |
3 | 张华民. 全钒液流电池的技术进展、不同储能时长系统的价格分析及展望[J]. 储能科学与技术, 2022, 11(9): 2772-2780. |
ZHANG H M. Development, cost analysis considering various durations, and advancement of vanadium flow batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2772-2780. | |
4 | 张力菠, 王格格. 电化学储能电池技术主题识别、演化及风险分析[J]. 储能科学与技术, 2023, 12(8): 2680-2692. |
ZHANG L B, WANG G G. Topic identification, evolution, and risk analysis of electrochemical energy storage battery technology[J]. Energy Storage Science and Technology, 2023, 12(8): 2680-2692. | |
5 | SOLAUN K, CERDÁ E. Climate change impacts on renewable energy generation. A review of quantitative projections[J]. Renewable and Sustainable Energy Reviews, 2019, 116: 109415. |
6 | NAMBAFU G S, SIDDHARTH K, ZHANG C, et al. An organic bifunctional redox active material for symmetric aqueous redox flow battery[J]. Nano Energy, 2021, 89: 106422. |
7 | LU P, LEUNG P, SU H N, et al. Materials, performance, and system design for integrated solar flow batteries-A mini review[J]. Applied Energy, 2021, 282: 116210. |
8 | HAISCH T, JI H, WEIDLICH C. Monitoring the state of charge of all-vanadium redox flow batteries to identify crossover of electrolyte[J]. Electrochimica Acta, 2020, 336: 135573. |
9 | 李明, 郑云平, 亚夏尔·吐尔洪, 等. 新型储能政策分析与建议[J]. 储能科学与技术, 2023, 12(6): 2022-2031. |
LI M, ZHENG Y P, ARTHUR T, et al. Analysis and suggestions on new energy storage policy[J]. Energy Storage Science and Technology, 2023, 12(6): 2022-2031. | |
10 | SUN J, JIANG H R, ZHANG B W, et al. Towards uniform distributions of reactants via the aligned electrode design for vanadium redox flow batteries[J]. Applied Energy, 2020, 259: 114198. |
11 | 陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展[J]. 储能科学与技术, 2023, 12(5): 1516-1552. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552. | |
12 | REZVANIZANIANI S M, LIU Z C, CHEN Y, et al. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility[J]. Journal of Power Sources, 2014, 256: 110-124. |
13 | NARAYANAN T M, ZHU Y G, GENÇER E, et al. Low-cost manganese dioxide semi-solid electrode for flow batteries[J]. Joule, 2021, 5(11): 2934-2954. |
14 | WANG C X, YU B, LIU Y Z, et al. N-alkyl-carboxylate-functionalized anthraquinone for long-cycling aqueous redox flow batteries[J]. Energy Storage Materials, 2021, 36: 417-426. |
15 | MACHADO C A, BROWN G O, YANG R D, et al. Redox flow battery membranes: Improving battery performance by leveraging structure-property relationships[J]. ACS Energy Letters, 2021, 6(1): 158-176. |
16 | YAO Y X, LEI J F, SHI Y, et al. Assessment methods and performance metrics for redox flow batteries[J]. Nature Energy, 2021, 6: 582-588. |
17 | LI Y. Advanced modelling, optimisation and control of vanadium redox flow battery[D]. The University of New South Wales: The University of New South Wales, 2018. |
18 | WEI L, ZENG L, WU M C, et al. Seawater as an alternative to deionized water for electrolyte preparations in vanadium redox flow batteries[J]. Applied Energy, 2019, 251: 113344. |
19 | WANG W, LUO Q T, LI B, et al. Recent progress in redox flow battery research and development[J]. Advanced Functional Materials, 2013, 23(8): 970-986. |
20 | NOH C, SERHIICHUK D, MALIKAH N, et al. Optimizing the performance of meta-polybenzimidazole membranes in vanadium redox flow batteries by adding an alkaline pre-swelling step[J]. Chemical Engineering Journal, 2021, 407: 126574. |
21 | HEO J, HAN J Y, KIM S, et al. Catalytic production of impurity-free V3.5+ electrolyte for vanadium redox flow batteries[J]. Nature Communications, 2019, 10: 4412. |
22 | 袁治章, 刘宗浩, 李先锋. 液流电池储能技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2944-2958. |
YUAN Z Z, LIU Z H, LI X F. Research progress of flow battery technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2944-2958. | |
23 | TURKER B, ARROYO KLEIN S, HAMMER E M, et al. Modeling a vanadium redox flow battery system for large scale applications[J]. Energy Conversion and Management, 2013, 66: 26-32. |
24 | 朱兆武, 张旭堃, 苏慧, 等. 全钒液流电池提高电解液浓度的研究与应用现状[J]. 储能科学与技术, 2022, 11(11): 3439-3446. |
ZHU Z W, ZHANG X K, SU H, et al. Research and application of increasing electrolyte concentration in all vanadium redox flow battery[J]. Energy Storage Science and Technology, 2022, 11(11): 3439-3446. | |
25 | WEBER S, PETERS J F, BAUMANN M, et al. Life cycle assessment of a vanadium redox flow battery[J]. Environmental Science & Technology, 2018, 52(18): 10864-10873. |
26 | SHEN M, GAO Q. A review on battery management system from the modeling efforts to its multiapplication and integration[J]. International Journal of Energy Research, 2019, 43(10): 5042-5075. |
27 | LEI J Z, GONG Q W. Operating strategy and optimal allocation of large-scale VRB energy storage system in active distribution networks for solar/wind power applications[J]. IET Generation, Transmission & Distribution, 2017, 11(9): 2403-2411. |
28 | QIU Y, LI X, CHEN W, et al. State of charge estimation of vanadium redox battery based on improved extended Kalman filter[J]. ISA Transactions, 2019, 94: 326-337. |
29 | 蒋凯, 李浩秒, 李威, 等. 几类面向电网的储能电池介绍[J]. 电力系统自动化, 2013, 37(1): 47-53. |
JIANG K, LI H M, LI W, et al. On several battery technologies for power grids[J]. Automation of Electric Power Systems, 2013, 37(1): 47-53. | |
30 | ALOTTO P, GUARNIERI M, MORO F. Redox flow batteries for the storage of renewable energy: A review[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 325-335. |
31 | 申江卫, 周灿彪, 舒星, 等. 宽温度环境下基于改进电化学模型的锂电池荷电状态估计[J]. 储能科学与技术, 2023, 12(9): 2904-2916. |
SHEN J W, ZHOU C B, SHU X, et al. State of charge estimation for lithium batteries based on an improved electrochemical model at a wide temperature environment[J]. Energy Storage Science and Technology, 2023, 12(9): 2904-2916. | |
32 | XIONG B Y, ZHAO J Y, LI J B. Modeling of an all-vanadium redox flow battery and optimization of flow rates[C]//2013 IEEE Power & Energy Society General Meeting. Vancouver, BC, Canada. IEEE, 2013: 1-5. |
33 | XIONG B Y, ZHAO J Y, WEI Z B, et al. Extended Kalman filter method for state of charge estimation of vanadium redox flow battery using thermal-dependent electrical model[J]. Journal of Power Sources, 2014, 262: 50-61. |
34 | 刘湘东. 全钒液流电池的巡检系统开发及模型参数估计[D]. 成都: 西南交通大学, 2018. |
LIU X D. Inspection system development and model parameter estimation of vanadium redox flow battery[D]. Chengdu: Southwest Jiaotong University, 2018. | |
35 | 邱亚. MW级全钒液流电池储能系统分层协调控制及应用[D]. 合肥: 合肥工业大学, 2019. |
QIU Y. Layered coordinated control and application of MW all-vanadium flow battery energy storage system [D]. Hefei: Hefei University of Technology, 2019. | |
36 | 洪为臣, 李冰洋, 王保国. 液流电池理论与技术——荷电状态的表征[J]. 储能科学与技术, 2015, 4(5): 493-497. |
HONG W C, LI B Y, WANG B G. Theoretical and technological aspects of flow batteries: Measurement of state of charge[J]. Energy Storage Science and Technology, 2015, 4(5): 493-497. | |
37 | 陈金庆, 朱顺泉, 王保国, 等. 全钒液流电池开路电压模型[J]. 化工学报, 2009, 60(1): 211-215. |
CHEN J Q, ZHU S Q, WANG B G, et al. Model of open-circuit voltage for all-vanadium redox flow battery[J]. Journal of the Chemical Industry and Engineering Society of China, 2009, 60(1): 211-215. | |
vanadium redox flow battery[J]. CIESC Journal, 2009, 60(1): 211-215. | |
38 | 刘湘东, 刘承志, 杨梓杰, 等. 基于无迹卡尔曼滤波的全钒液流电池状态估计[J]. 中国电机工程学报, 2018, 38(6): 1769-1777, 1914. |
LIU X D, LIU C Z, YANG Z J, et al. States estimation of vanadium redox flow battery based on unscented Kalman filter[J]. Proceedings of the CSEE, 2018, 38(6): 1769-1777, 1914. | |
39 | 狄云, 周正柱, 党会鸿, 等. 基于ECM的电芯电-热耦合建模与验证[J]. 储能科学与技术, 2023, 12(8): 2638-2648. |
DI Y, ZHOU Z Z, DANG H H, et al. Modeling and verification of electric-thermal coupling in batteries based on ECM[J]. Energy Storage Science and Technology, 2023, 12(8): 2638-2648. | |
40 | 罗冬梅. 钒氧化还原液流电池研究[D]. 沈阳: 东北大学, 2005. |
LUO D M. Study on vanadium redox flow battery[D].Shenyang: Northeastern University, 2005. | |
41 | 李鑫, 莫言青, 邱亚, 等. 全钒液流电池仿真模型综述[J]. 机械设计与制造工程, 2017, 46(11): 1-7. |
LI X, MO Y Q, QIU Y, et al. Review on the vanadium redox flow battery simulation modeling[J]. Machine Design and Manufacturing Engineering, 2017, 46(11): 1-7. | |
42 | WEI Z B, MENG S J, TSENG K J, et al. An adaptive model for vanadium redox flow battery and its application for online peak power estimation[J]. Journal of Power Sources, 2017, 344: 195-207. |
43 | 潘建欣. 全钒液流电池的模型研究[D]. 长沙: 中南大学, 2012. |
PAN J X. Study on model of all-vanadium flow battery[D].Changsha: Central South University, 2012. | |
44 | 陈正, 王志得, 牟文彪, 等. 基于PNGV模型与自适应卡尔曼滤波的铅炭电池荷电状态评估[J]. 储能科学与技术, 2023, 12(3): 941-950. |
CHEN Z, WANG Z D, (MOU/MU) W B, et al. State-of-charge estimation of lead-carbon batteries based on the PNGV model and an adaptive Kalman filter algorithm[J]. Energy Storage Science and Technology, 2023, 12(3): 941-950. | |
45 | 安婷. 钒液流电池储能系统在微电网中的应用[D]. 包头: 内蒙古科技大学, 2014. |
AN T. The application of vanadium redox flow battery energy storage system in microgrid[D].Baotou: Inner Mongolia University of Science & Technology, 2014. | |
46 | BAROTE L, MARINESCU C, GEORGESCU M. VRB modeling for storage in stand-alone wind energy systems[C]//2009 IEEE Bucharest PowerTech. Bucharest, Romania. IEEE, 2009: 1-6. |
47 | 朱明月. 全钒液流电池荷电状态估计方法研究[D]. 长春: 吉林大学, 2022. |
ZHU M Y. Research on state-of-charge estimation method of vanadium redox flow battery[D].Changchun: Jilin University, 2022. | |
48 | XIONG B Y, YANG Y S, TANG J R, et al. An enhanced equivalent circuit model of vanadium redox flow battery energy storage systems considering thermal effects[J]. IEEE Access, 2019, 7: 162297-162308. |
49 | LI Y F, BAO J, SKYLLAS-KAZACOS M, et al. Studies on dynamic responses and impedance of the vanadium redox flow battery[J]. Applied Energy, 2019, 237: 91-102. |
50 | 吴雨森. 全钒液流电池SOC及能量管理系统研究[D]. 合肥: 合肥工业大学, 2019. |
WU Y S. Research on SOC estimation and energy management system of all vanadium redox flow battery[D].Hefei: Hefei University of Technology, 2019. | |
51 | HUNG Y, BU Y, KUBIN J, et al. Effects of current scan rate on the polarization curve of vanadium redox flow batteries[C]//2017 International Energy and Sustainability Conference (IESC). Farmingdale, NY, USA. IEEE, 2017: 1-4. |
52 | 孙妙云. 全钒液流电池模型参数辨识与SOC估计研究[D]. 武汉: 武汉理工大学, 2020. |
SUN M Y. Study on model parameter identification and SOC estimation of all-vanadium redox flow battery[D].Wuhan: Wuhan University of Technology, 2020. | |
53 | 田波, 严川伟, 屈庆, 等. 钒电池电解液的电位滴定分析[J]. 电池, 2003, 33(4): 261-263. |
TIAN B, YAN C W, QU Q, et al. Potentiometric titration analysis of electrolyte of vanadium battery[J]. Battery Bimonthly, 2003, 33(4): 261-263. | |
54 | 刘素琴, 桑玉, 李林德, 等. 电位滴定法测定钒电池电解液中不同价态的钒[J]. 理化检验-化学分册, 2007, 43(12): 1077-1078, 1080. |
LIU S Q, SANG Y, LI L D, et al. Determination of vanadium with different valences in electrolyte of vanadium battery by potentiometric titration[J]. Physical Testing and Chemical Analysis (Part B (Chemical Analysis)), 2007, 43(12): 1077-1078, 1080. | |
55 | 方磊, 常芳, 李晓兵, 等. VRB电解液的高锰酸钾电位滴定分析[J]. 电池, 2012, 42(1): 54-57. |
FANG L, CHANG F, LI X B, et al. Potassium permanganate based potentiometric titration of electrolyte of VRB[J]. Battery Bimonthly, 2012, 42(1): 54-57. | |
56 | SKYLLAS-KAZACOS M, KAZACOS M. State of charge monitoring methods for vanadium redox flow battery control[J]. Journal of Power Sources, 2011, 196(20): 8822-8827. |
57 | PETCHSINGH C, QUILL N, JOYCE J T, et al. Spectroscopic measurement of state of charge in vanadium flow batteries with an analytical model of VIV-VVAbsorbance[J]. Journal of the Electrochemical Society, 2015, 163(1): A5068-A5083. |
58 | 陈富于, 陈晖, 侯绍宇, 等. 钒电池电解液中不同价态钒的分光光度分析[J]. 光谱学与光谱分析, 2011, 31(10): 2839-2842. |
CHEN F Y, CHEN H, HOU S Y, et al. Spectrophotometry analysis of different valence state of vanadium in vanadium battery electrolyte[J]. Spectroscopy and Spectral Analysis, 2011, 31(10): 2839-2842. | |
59 | 卢文品. 基于双卡尔曼滤波算法的全钒液流电池荷电状态估计与应用[D]. 合肥: 合肥工业大学, 2019. |
LU W P. State of charge estimation and application of vanadium redox flow battery based on doublekalman filter algorithm[D].Hefei: Hefei University of Technology, 2019. | |
60 | CHANG Y T, SUN M Y, JIA W Q, et al. Online model identification method of vanadium redox flow battery based on multiple innovation recursive least squares[C]//2020 Asia Energy and Electrical Engineering Symposium (AEEES). Chengdu, China. IEEE, 2020: 758-762. |
61 | SUN M Y, SU Y X, XIONG B Y, et al. Online model identification method of vanadium redox flow battery based on time-varying forgetting factor recursive least squares[C]//2019 Chinese Automation Congress (CAC). Hangzhou, China. IEEE, 2019: 1609-1614. |
62 | 王子睿. 全钒液流电池建模及运行控制策略研究[D]. 武汉: 武汉理工大学, 2021. |
WANG Z R. Study on modeling and operation control strategy of vanadium flow battery[D].Wuhan: Wuhan University of Technology, 2021. | |
63 | HOU J, LIU J W, CHEN F W, et al. Robust lithium-ion state-of-charge and battery parameters joint estimation based on an enhanced adaptive unscented Kalman filter[J]. Energy, 2023, 271: 126998. |
64 | QU D W, LUO Z X, YANG F, et al. State of charge estimation for the Vanadium Redox Flow Battery based on Extended Kalman filter using modified parameter identification[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022, 44(4): 9747-9763. |
65 | WEI Z B, TSENG K J, WAI N, et al. Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery[J]. Journal of Power Sources, 2016, 332: 389-398. |
66 | 徐茂舒, 沈旖, 王晟, 等. 先进感知技术在电池状态估计中的应用与启示[J]. 电气工程学报, 2022, 17(3): 40-57. |
XU M S, SHEN Y, WANG S, et al. Application and enlightenment of advanced sensing technology in battery state estimation[J]. Journal of Electrical Engineering, 2022, 17(3): 40-57. | |
67 | LEE K J, LEE W H, KIM K K K. Battery state-of-charge estimation using data-driven Gaussian process Kalman filters[J]. Journal of Energy Storage, 2023, 72: 108392. |
68 | DONG S D, FENG J, ZHANG Y, et al. State of charge estimation of vanadium redox flow battery based on online equivalent circuit model[C]//2021 31st Australasian Universities Power Engineering Conference (AUPEC). Perth, Australia. IEEE, 2021: 1-6. |
69 | 费亚龙, 谢长君, 汤泽波, 等. 基于平方根无迹卡尔曼滤波的锂电池状态估计[J]. 中国电机工程学报, 2017, 37(15): 4514-4520, 4593. |
FEI Y L, XIE C J, TANG Z B, et al. State-of-charge estimation based on square root unscented Kalman filter algorithm for Li-ion batteries[J]. Proceedings of the CSEE, 2017, 37(15): 4514-4520, 4593. | |
70 | LUO Z X, QU D W, FAN L Y, et al. State of charge estimation for the vanadium redox flow battery based on the Sage-Husa adaptive extended Kalman filter[J]. International Journal of Circuit Theory and Applications, 2024, 52(1): 380-395. |
71 | 杨洋. 全钒液流电池系统性能评估与状态估计[D]. 成都: 西南交通大学, 2019. |
YANG Y. Performance evaluation and state estimation of vanadium redox flow battery system[D].Chengdu: Southwest Jiaotong University, 2019. | |
72 | ZHAO X B, KIM K, JUNG S. State-of-charge estimation using data fusion for vanadium redox flow battery[J]. Journal of Energy Storage, 2022, 52: 104852. |
73 | WANG Q, SUN C Y, GU Y D. Research on SOC estimation method of hybrid electric vehicles battery based on the grey wolf optimized particle filter[J]. Computers and Electrical Engineering, 2023, 110: 108907. |
74 | KHAKI B, DAS P. An equivalent circuit model for Vanadium Redox Batteries via hybrid extended Kalman filter and Particle filter methods[J]. Journal of Energy Storage, 2021, 39: 102587. |
75 | LIU F, YU D, SHAO C, et al. A review of multi-state joint estimation for lithium-ion battery: Research status and suggestions[J]. Journal of Energy Storage, 2023, 73: 109071. |
76 | NIU H T, HUANG J Q, WANG C G, et al. State of charge prediction study of vanadium redox-flow battery with BP neural network[C]//2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). Dalian, China. IEEE, 2020: 1289-1293. |
77 | LI R, XIONG B Y, ZHANG S F, et al. A novel one dimensional convolutional neural network based data-driven vanadium redox flow battery modelling algorithm[J]. Journal of Energy Storage, 2023, 61: 106767. |
78 | CAO H F, ZHU X J, SHEN H F, et al. A neural network based method for real-time measurement of capacity and SOC of vanadium redox flow battery[C]//Proceedings of ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology Collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 Nuclear Forum, June 28-July 2, 2015, San Diego, California, USA. 2015 |
79 | 陆鹏, 付华, 卢万杰, 等. 基于HCOAG算法优化KELM的全钒液流电池SOC估计[J]. 电力系统保护与控制, 2023, 51(7): 135-145. |
LU P, FU H, LU W J, et al. State of charge estimation for a vanadium redox flow battery based on a kernel extreme learning machine optimized by an improved coyote and grey wolf algorithm[J]. Power System Protection and Control, 2023, 51(7): 135-145. | |
80 | XIONG B Y, ZHANG H J, DENG X T, et al. State of charge estimation based on sliding mode observer for vanadium redox flow battery[C]//2017 IEEE Power & Energy Society General Meeting. Chicago, IL, USA. IEEE, 2017: 1-5. |
81 | ZHANG X G, DUAN L C, GONG Q S, et al. State of charge estimation for lithium-ion battery based on adaptive extended Kalman filter with improved residual covariance matrix estimator[J]. Journal of Power Sources, 2024, 589: 233758. |
82 | YEREGUI J, OCA L, LOPETEGI I, et al. State of charge estimation combining physics-based and artificial intelligence models for Lithium-ion batteries[J]. Journal of Energy Storage, 2023, 73: 108883. |
83 | MA C T. A novel state of charge estimating scheme based on an air-gap fiber interferometer sensor for the vanadium redox flow battery[J]. Energies, 2020, 13(2): 291. |
84 | 范永生, 陈晓, 徐冬清, 等. 全钒液流电池荷电状态检测方法研究[J]. 华南师范大学学报(自然科学版), 2009, 41(S1): 112-114. |
FAN Y S, CHEN X, XU D Q, et al. Study on detection method of state of charge of all-vanadium flow battery[J]. Journal of South China Normal University (Natural Science Edition), 2009, 41(S1): 112-114. | |
85 | 王志文, 叶强. 液流电池系统储液罐中电解液的混合损失及导流策略[J]. 储能科学与技术, 2023, 12(4): 1148-1157. |
WANG Z W, YE Q. Investigation of the mixing loss and guiding strategy of the electrolyte flow in the tanks of a redox flow battery system[J]. Energy Storage Science and Technology, 2023, 12(4): 1148-1157. | |
86 | TROVÒ A, SACCARDO A, GIOMO M, et al. Thermal modeling of industrial-scale vanadium redox flow batteries in high-current operations[J]. Journal of Power Sources, 2019, 424: 204-214. |
87 | FU J H, WANG T, WANG X H, et al. Dynamic flow rate control for vanadium redox flow batteries[J]. Energy Procedia, 2017, 105: 4482-4491. |
88 | REN J Y, WEI L, WANG Z Y, et al. An electrochemical‐thermal coupled model for aqueous redox flow batteries[J]. International Journal of Heat and Mass Transfer, 2022, 192: 122926. |
89 | XIONG B Y, ZHAO J Y, WEI Z B, et al. State of charge estimation of an all-vanadium redox flow battery based on a thermal-dependent model[C]//2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Hong Kong, China. IEEE, 2013: 1-6. |
[1] | Jiangwei SHEN, Canbiao ZHOU, Xing SHU, Zheng CHEN, Yonggang LIU. State of charge estimation for lithium batteries based on an improved electrochemical model at a wide temperature environment [J]. Energy Storage Science and Technology, 2023, 12(9): 2904-2916. |
[2] | Honghui WANG, Yifan LIU, Deren CHU. Calendar aging of lithium titanate battery with different state of charge [J]. Energy Storage Science and Technology, 2023, 12(8): 2606-2614. |
[3] | Hongsheng GUAN, Cheng QIAN, Binghui XU, Bo SUN, Yi REN. SAM-GRU-based fusion neural network for SOC estimation in lithium-ion batteries under a wide range of operating conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2229-2237. |
[4] | Birong TAN, Jianhua DU, Xianghu YE, Xin CAO, Chang QU. Overview of SOC estimation methods for lithium-ion batteries based on model [J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010. |
[5] | Feng LIU, Haizhong CHEN. Lithium-ion battery state prediction based on CEEMDAN and ISOA-ELM [J]. Energy Storage Science and Technology, 2023, 12(4): 1244-1256. |
[6] | Hongxin WU, Aikui LI, Cun DONG, Shumin SUN, Guanglei LI, Shibo WANG. Control strategy for wind power fluctuation stabilization with energy storage and frequency modulation reserve [J]. Energy Storage Science and Technology, 2023, 12(4): 1194-1203. |
[7] | Farong KOU, Xi LUO, Hao MEN, Yangjuan GUO, Tianxiang YANG. State of charge estimation of lithium battery based on feature optimization and improved extreme learning machine [J]. Energy Storage Science and Technology, 2023, 12(4): 1234-1243. |
[8] | Zheng CHEN, Zhide WANG, Wenbiao MOU, Peiwang ZHU, Gang XIAO. State-of-charge estimation of lead-carbon batteries based on the PNGV model and an adaptive Kalman filter algorithm [J]. Energy Storage Science and Technology, 2023, 12(3): 941-950. |
[9] | Lulu LI, Zhengshun TAO, Tinglong PAN, Weilin YANG, Guanyang HU. Research on fractional modeling and SOC estimation strategy for lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 544-551. |
[10] | Wenkai ZHU, Xing ZHOU, Yajie LIU, Tao ZHANG, Yuanming SONG. Real time state of charge estimation method of lithium-ion battery based on recursive gated recurrent unit neural network [J]. Energy Storage Science and Technology, 2023, 12(2): 570-578. |
[11] | Peng LIN, Tao LIU, Peng JIN, Zhenpo WANG, Shengjie WANG, Hongsheng YUAN, Ze MA, Yu DI. Identification of lithium-ion battery equivalent circuit model parameters based on the multi-innovation identification algorithm [J]. Energy Storage Science and Technology, 2023, 12(10): 3155-3169. |
[12] | Qingyang CHEN, Yinghui HE, Guanding YU, Mingyang LIU, Chong XU, Zhenming LI. Integrating model- and data-driven methods for accurate state estimation of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 209-217. |
[13] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[14] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[15] | Feng TIAN, Zhijiang CHENG, Handi YANG, Tianxiang YANG. Fault-tolerant control strategy for modular multi-level hybrid converter battery energy storage system [J]. Energy Storage Science and Technology, 2022, 11(5): 1583-1591. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||