Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (2): 544-551.doi: 10.19799/j.cnki.2095-4239.2022.0551
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Lulu LI(), Zhengshun TAO, Tinglong PAN(), Weilin YANG, Guanyang HU
Received:
2022-09-28
Revised:
2022-10-14
Online:
2023-02-05
Published:
2023-02-24
Contact:
Tinglong PAN
E-mail:577493796@qq.com;tlpan@jiangnan.edu.cn
CLC Number:
Lulu LI, Zhengshun TAO, Tinglong PAN, Weilin YANG, Guanyang HU. Research on fractional modeling and SOC estimation strategy for lithium batteries[J]. Energy Storage Science and Technology, 2023, 12(2): 544-551.
1 | LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
2 | COLEMAN M, HURLEY W G, LEE C K. An improved battery characterization method using a two-pulse load test[J]. IEEE Transactions on Energy Conversion, 2008, 23(2): 708-713. |
3 | 袁世斐, 吴红杰, 殷承良. 锂离子电池简化电化学模型: 浓度分布估计[J]. 浙江大学学报(工学版), 2017, 51(3): 478-486. |
YUAN S F, WU H J, YIN C L. Simplified electrochemical model for Li-ion battery: Lithium concentration estimation[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(3): 478-486. | |
4 | TAMANWE P, SOROUSH R, KIRAN K, et al. Detailed electrochemical model of microphotosynthetic power cells[J]. IEEE Transactions on Industry Applications, 2021, 57(2). |
5 | TROVÒ A, SACCARDO A, GIOMO M, et al. Thermal modeling of industrial-scale vanadium redox flow batteries in high-current operations[J]. Journal of Power Sources, 2019, 424: 204-214. |
6 | 朱磊, 刘子博, 李路路, 等. 基于RLS-DLUKF算法的锂电池SOC预测方法研究[J]. 储能科学与技术, 2021, 10(3): 1137-1144. |
ZHU L, LIU Z B, LI L L, et al. Research on a battery SOC prediction method based on the RLS-DLUKF algorithm[J]. Energy Storage Science and Technology, 2021, 10(3): 1137-1144. | |
7 | HU X S, LI S E, YANG Y L. Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2016, 2(2): 140-149. |
8 | 刘树林, 崔纳新, 李岩, 等. 基于分数阶理论的车用锂离子电池建模及荷电状态估计[J]. 电工技术学报, 2017, 32(4): 189-195. |
LIU S L, CUI N X, LI Y, et al. Modeling and state of charge estimation of lithium-ion battery based on theory of fractional order for electric vehicle[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 189-195. | |
9 | WANG B J, LI S E, PENG H E, et al. Fractional-order modeling and parameter identification for lithium-ion batteries[J]. Journal of Power Sources, 2015, 293: 151-161. |
10 | 罗勇, 祁朋伟, 黄欢, 等. 基于容量修正的安时积分SOC估算方法研究[J]. 汽车工程, 2020, 42(5): 681-687. |
LUO Y, QI P W, HUANG H, et al. Study on battery SOC estimation by ampere-hour integral method with capacity correction[J]. Automotive Engineering, 2020, 42(5): 681-687. | |
11 | 徐文华, 王顺利, 于春梅, 等. 基于Thevenin模型和UKF的锂电池SOC估算方法研究[J]. 自动化仪表, 2020, 41(5): 31-36. |
XU W H, WANG S L, YU C M, et al. Research on the estimation method of lithium battery SOC based on thevenin model and UKF[J]. Process Automation Instrumentation, 2020, 41(5): 31-36. | |
12 | 谢长君, 费亚龙, 曾春年, 等. 基于无迹粒子滤波的车载锂离子电池状态估计[J]. 电工技术学报, 2018, 33(17): 3958-3964. |
XIE C J, FEI Y L, ZENG C N, et al. State-of-charge estimation of lithium-ion battery using unscented particle filter in vehicle[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 3958-3964. | |
13 | 刘新天, 李贺, 何耀, 等. 基于IUPF算法与可变参数电池模型的SOC估计方法[J]. 东南大学学报(自然科学版), 2018, 48(1): 54-62. |
LIU X T, LI H, HE Y, et al. SOC estimation method based on IUPF algorithm and variable parameter battery model[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(1): 54-62. | |
14 | 谢滟馨, 王顺利, 史卫豪, 等. 一种用于高保真锂电池SOC估计的无迹粒子滤波新方法[J]. 储能科学与技术, 2021, 10(2): 722-731. |
XIE Y X, WANG S L, SHI W H, et al. A new method of unscented particle filter for high-fidelity lithium-ion battery SOC estimation[J]. Energy Storage Science and Technology, 2021, 10(2): 722-731. | |
15 | 黄耀光, 高博, 李建新, 等. 基于施密特正交变换UKF的单站无源定位算法[J]. 电光与控制, 2013, 20(2): 37-40. |
HUANG Y G, GAO B, LI J X, et al. Single-observer passive location based on Schmidt orthogonal transform UKF algorithm[J]. Electronics Optics & Control, 2013, 20(2): 37-40. | |
16 | 吴铁洲, 刘康丽, 杜炘宇. 基于UKPF算法的锂离子电池SOC估算[J]. 电源技术, 2021, 45(5): 602-605, 625. |
WU T Z, LIU K L, DU X Y. SOC estimation of lithium ion battery based on UKPF algorithm[J]. Chinese Journal of Power Sources, 2021, 45(5): 602-605, 625. | |
17 | 何耀, 秦少勋, 刘新天, 等. 基于分数阶无迹粒子滤波的动力电池SOC估计[J]. 汽车技术, 2018(5): 6-11. |
HE Y, QIN S X, LIU X T, et al. Power battery SOC estimation based on fractional unscented particle filter[J]. Automobile Technology, 2018(5): 6-11. | |
18 | KONATOWSKI S, KANIEWSKI P, MATUSZEWSKI J. Comparison of estimation accuracy of EKF, UKF and PF filters[J]. Annual of Navigation, 2016, 23: 69-87. |
19 | 李嘉波, 魏孟, 李忠玉, 等. 基于自适应扩展卡尔曼滤波的锂离子电池荷电状态估计[J]. 储能科学与技术, 2020, 9(4): 1147-1152. |
LI J B, WEI M, LI Z Y, et al. State of charge estimation of Li-ion battery based on adaptive extended Kalman filter[J]. Energy Storage Science and Technology, 2020, 9(4): 1147-1152. |
[1] | Yuhao ZHOU, Luoyun XÜ, Zhongping ZHANG, Lingchong LIU, Bin NAN, Haiqi ZHAO. Construction and simulation analysis of thermoelectric coupling model of lithium battery based on digital twin [J]. Energy Storage Science and Technology, 2023, 12(2): 536-543. |
[2] | Wenkai ZHU, Xing ZHOU, Yajie LIU, Tao ZHANG, Yuanming SONG. Real time state of charge estimation method of lithium-ion battery based on recursive gated recurrent unit neural network [J]. Energy Storage Science and Technology, 2023, 12(2): 570-578. |
[3] | Qingyang CHEN, Yinghui HE, Guanding YU, Mingyang LIU, Chong XU, Zhenming LI. Integrating model- and data-driven methods for accurate state estimation of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 209-217. |
[4] | Qiantong LIU, Yuanxiu XING. Remaining life prediction of lithium-ion battery based on VMD-PSO-GRU model [J]. Energy Storage Science and Technology, 2023, 12(1): 236-246. |
[5] | Miaomiao CHEN, Qinjun SHAO, Jian CHEN. Preparation and application of Cr8O21 as cathode material for high specific energy lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 3011-3020. |
[6] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[7] | Jianping ZHONG, Tao FEI. Defects detection and recognition of lithium battery electrode plate coating based on WOA-BPNN [J]. Energy Storage Science and Technology, 2022, 11(8): 2537-2545. |
[8] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[9] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[10] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[11] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[12] | WU Yida, ZHANG Yi, ZHAN Yuanjie, GUO Yaqi, ZHANG liao, LIU Xingjiang, YU Hailong, ZHAO Wenwu, HUANG Xuejie. The effect of B2O3 modification on the electrochemical properties of LiCoO2 cathode [J]. Energy Storage Science and Technology, 2022, 11(6): 1687-1692. |
[13] | Feng TIAN, Zhijiang CHENG, Handi YANG, Tianxiang YANG. Fault-tolerant control strategy for modular multi-level hybrid converter battery energy storage system [J]. Energy Storage Science and Technology, 2022, 11(5): 1583-1591. |
[14] | Suhang WANG, Jianlin LI, Yaxin LI, Junjie XIONG, Wei ZENG. Research on charging strategy of lithium-ion battery system at low temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. |
[15] | Bowen CHEN, Ruiguang CUI, Yanbin SHEN, Liwei CHEN. Application of a novel method for characterization of local Young’s modulus in lithium (ion) batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 991-999. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||