Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (10): 3155-3169.doi: 10.19799/j.cnki.2095-4239.2023.0358
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Peng LIN1(), Tao LIU2, Peng JIN3,4,5(), Zhenpo WANG3, Shengjie WANG1, Hongsheng YUAN1, Ze MA1, Yu DI1
Received:
2023-05-25
Revised:
2023-07-20
Online:
2023-10-05
Published:
2023-10-09
Contact:
Peng JIN
E-mail:leenzi@163.com;jpzy216@163.com
CLC Number:
Peng LIN, Tao LIU, Peng JIN, Zhenpo WANG, Shengjie WANG, Hongsheng YUAN, Ze MA, Yu DI. Identification of lithium-ion battery equivalent circuit model parameters based on the multi-innovation identification algorithm[J]. Energy Storage Science and Technology, 2023, 12(10): 3155-3169.
Table 1
Simulation error of the 2-order RC equivalent circuit model under different pulses"
指标 | 脉冲 | 算法 | ||
---|---|---|---|---|
MPN | MNP | HPPC | ||
MAE/mV | 1.18 | 1.88 | 3.00 | FMIAELS |
5.80 | 6.60 | 6.39 | RELS | |
3.18 | 4.24 | 4.09 | FRLS | |
545.69 | 530.2 | 120.82 | RSNA | |
295.83 | 286.57 | 72.44 | MRAS | |
8.98 | 9.42 | 7.14 | ADE | |
RMSE/mV | 1.89 | 3.09 | 4.72 | FMIAELS |
6.90 | 7.60 | 8.67 | RELS | |
3.85 | 4.76 | 7.35 | FRLS | |
1996.12 | 1938.31 | 331.05 | RSNA | |
1077.18 | 1039.89 | 305.25 | MRAS | |
4.86 | 11.65 | 8.10 | ADE | |
WMAPE/% | 0.04 | 0.06 | 0.09 | FMIAELS |
0.18 | 0.21 | 0.29 | RELS | |
0.10 | 0.13 | 0.13 | FRLS | |
16.85 | 16.37 | 3.72 | RSNA | |
9.13 | 8.85 | 2.23 | MRAS | |
0.19 | 0.29 | 0.22 | ADE |
Table 2
Simulation error of the PNGV model under different pulses"
指标 | 脉冲 | 算法 | ||
---|---|---|---|---|
MPN | MNP | HPPC | ||
MAE/mV | 33.13 | 33.62 | 75.59 | FMIAELS |
36.10 | 35.87 | 78.20 | RELS | |
38.01 | 34.73 | 84.83 | FRLS | |
5923.89 | 5174.48 | 9208.49 | RSNA | |
5868.99 | 5108.72 | 8931.14 | MRAS | |
31.69 | 29.34 | 73.39 | ADE | |
RMSE/mV | 38.38 | 37.44 | 78.34 | FMIAELS |
41.10 | 40.91 | 81.40 | RELS | |
44.00 | 40.78 | 88.19 | FRLS | |
21630.03 | 18884.44 | 25434.77 | RSNA | |
21407.39 | 18756.21 | 25195.59 | MRAS | |
36.45 | 32.74 | 77.16 | ADE | |
WMAPE/% | 0.97 | 1.04 | 2.33 | FMIAELS |
1.13 | 1.27 | 2.52 | RELS | |
1.17 | 1.07 | 2.61 | FRLS | |
182.88 | 160.15 | 283.57 | RSNA | |
181.19 | 158.11 | 275.03 | MRAS | |
0.98 | 0.91 | 2.26 | ADE |
Table 3
Simulation error of the 0-order RC equivalent circuit model"
指标 | 脉冲 | 算法 | ||
---|---|---|---|---|
MPN | MNP | HPPC | ||
MAE/mV | 4.04 | 6.80 | 4.46 | FMIAELS |
17.50 | 22.22 | 18.20 | RELS | |
10.98 | 14.05 | 15.45 | FRLS | |
11.75 | 16.47 | 11.83 | ADE | |
RMSE/mV | 9.17 | 10.06 | 10.13 | FMIAELS |
20.60 | 25.10 | 25.00 | RELS | |
12.90 | 18.15 | 18.55 | FRLS | |
16.79 | 20.74 | 16.97 | ADE | |
WMAPE/% | 0.12 | 0.21 | 0.14 | FMIAELS |
0.54 | 0.69 | 0.56 | RELS | |
0.34 | 0.44 | 0.48 | FRLS | |
0.37 | 0.51 | 0.36 | ADE |
Table 4
Simulation error of the 1-order RC equivalent circuit model"
指标 | 脉冲 | 算法 | ||
---|---|---|---|---|
MPN | MNP | HPPC | ||
MAE/mV | 2.59 | 3.17 | 3.16 | FMIAELS |
5.80 | 9.20 | 5.20 | RELS | |
3.13 | 5.01 | 4.3 | FRLS | |
4.89 | 7.52 | 7.36 | ADE | |
RMSE/mV | 3.50 | 4.10 | 5.64 | FMIAELS |
6.90 | 10.70 | 6.27 | RELS | |
3.71 | 5.50 | 6.27 | FRLS | |
6.21 | 9.23 | 8.48 | ADE | |
WMAPE/% | 0.08 | 0.10 | 0.10 | FMIAELS |
0.18 | 0.28 | 0.28 | RELS | |
0.10 | 0.16 | 0.13 | FRLS | |
0.15 | 0.23 | 0.23 | ADE |
1 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
2 | 孙振宇, 王震坡, 刘鹏, 等. 新能源汽车动力电池系统故障诊断研究综述[J]. 机械工程学报, 2021, 57(14): 87-104. |
SUN Z Y, WANG Z P, LIU P, et al. Overview of fault diagnosis in new energy vehicle power battery system[J]. Journal of Mechanical Engineering, 2021, 57(14): 87-104. | |
3 | 王震坡, 王秋诗, 刘鹏, 等. 大数据驱动的动力电池健康状态估计方法综述[J]. 机械工程学报, 2023, 59(2): 151-168. |
WANG Z P, WANG Q S, LIU P, et al. Review on techniques for power battery state of health estimation driven by big data methods[J]. Journal of Mechanical Engineering, 2023, 59(2): 151-168. | |
4 | 王放放, 冯祥明, 赵光金, 等. 电化学阻抗谱识别不同化学体系退役动力锂离子电池[J]. 储能科学与技术, 2023, 12(2): 609-614. |
WANG F F, FENG X M, ZHAO G J, et al. Identification of retired power lithium-ion batteries of chemical systems by electrochemical impedance spectroscopy[J]. Energy Storage Science and Technology, 2023, 12(2): 609-614. | |
5 | 胡晓松, 唐小林. 电动车辆锂离子动力电池建模方法综述[J]. 机械工程学报, 2017, 53(16): 20-31. |
HU X S, TANG X L. Review of modeling techniques for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2017, 53(16): 20-31. | |
6 | LIN P, JIN P, ZHANG H Y. Identification and fast measurement method of open-circuit voltage[J]. Journal of the Electrochemical Society, 2023, 170(3): 030525. |
7 | 王春雨, 崔纳新, 李长龙, 等. 基于电热耦合模型和多参数约束的动力电池峰值功率预测[J]. 机械工程学报, 2019, 55(20): 28-35. |
WANG C Y, CUI N X, LI C L, et al. State of power prediction based on electro-thermal battery model and multi-parameter constraints for lithium-ion battery[J]. Journal of Mechanical Engineering, 2019, 55(20): 28-35. | |
8 | LIN P, JIN P, HONG J C, et al. Battery voltage and state of power prediction based on an improved novel polarization voltage model[J]. Energy Reports, 2020, 6: 2299-2308. |
9 | 朱瑞, 段彬, 温法政, 等. 基于分布式最小二乘法的锂离子电池建模及参数辨识[J]. 机械工程学报, 2019, 55(20): 85-93. |
ZHU R, DUAN B, WEN F Z, et al. Lithium-ion battery modeling and parameter identification based on decentralized least squares method[J]. Journal of Mechanical Engineering, 2019, 55(20): 85-93. | |
10 | 盛军, 付一民, 俞会根. 储能软包大模组结构稳定性[J]. 储能科学与技术, 2023, 12(2): 579-584. |
SHENG J, FU Y M, YU H G. Structure simulation of large soft pack module for energy storage[J]. Energy Storage Science and Technology, 2023, 12(2): 579-584. | |
11 | LI J H, KLEE BARILLAS J, GUENTHER C, et al. Sequential Monte Carlo filter for state estimation of LiFePO4 batteries based on an online updated model[J]. Journal of Power Sources, 2014, 247: 156-162. |
12 | LAI X, GAO W K, ZHENG Y J, et al. A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries[J]. Electrochimica Acta, 2019, 295: 1057-1066. |
13 | WEI X Z, ZHU B, XU W. Internal resistance identification in vehicle power lithium-ion battery and application in lifetime evaluation[C]//2009 International Conference on Measuring Technology and Mechatronics Automation. April 11-12, 2009, Zhangjiajie, China. IEEE, 2009: 388-392. |
14 | CASTANO S, GAUCHIA L, VONCILA E, et al. Dynamical modeling procedure of a Li-ion battery pack suitable for real-time applications[J]. Energy Conversion and Management, 2015, 92: 396-405. |
15 | YAO S G, LIAO P, XIAO M, et al. Equivalent circuit modeling and simulation of the zinc nickel single flow battery[J]. AIP Advances, 2017, 7(5): 055112. |
16 | LIU C Z, LIU W Q, WANG L Y, et al. A new method of modeling and state of charge estimation of the battery[J]. Journal of Power Sources, 2016, 320: 1-12. |
17 | 李泉. 锂离子动力电池管理系统关键技术研究[D]. 长沙: 湖南大学, 2017. |
LI Q. Research on key technologies for the management system of lithium-ion power battery[D]. Changsha: Hunan University, 2017. | |
18 | 杨阳, 汤桃峰, 秦大同, 等. 电动汽车锂电池PNGV等效电路模型与SOC估算方法[J]. 系统仿真学报, 2012, 24(4): 938-942. |
YANG Y, TANG T F, QIN D T, et al. PNGV equivalent circuit model and SOC estimation algorithm of lithium batteries for electric vehicle[J]. Journal of System Simulation, 2012, 24(4): 938-942. | |
19 | ZHANG X, WANG Y J, WU J, et al. A novel method for lithium-ion battery state of energy and state of power estimation based on multi-time-scale filter[J]. Applied Energy, 2018, 216: 442-451. |
20 | ZHANG C, ALLAFI W, DINH Q, et al. Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique[J]. Energy, 2018, 142: 678-688. |
21 | SONG Q, MI Y X, LAI W X. A novel variable forgetting factor recursive least square algorithm to improve the anti-interference ability of battery model parameters identification[J]. IEEE Access, 2019, 7: 61548-61557. |
22 | 黄凯, 郭永芳, 李志刚. 基于信息反馈粒子群的高精度锂离子电池模型参数辨识[J]. 电工技术学报, 2019, 34(S1): 378-387. |
HUANG K, GUO Y F, LI Z G. High precision parameter identification of lithium-ion battery model based on feedback particle swarm optimization algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 378-387. | |
23 | 刘芳, 马杰, 苏卫星, 等. 基于模型参数在线辨识技术的SOC估算方法[J]. 东北大学学报(自然科学版), 2020, 41(11): 1543-1549. |
LIU F, MA J, SU W X, et al. Model parameter online identification based SOC estimation method[J]. Journal of Northeastern University (Natural Science), 2020, 41(11): 1543-1549. | |
24 | 柳应全, 鲁军勇, 龙鑫林, 等. 储能用蓄电池模型参数的动态辨识[J]. 国防科技大学学报, 2019, 41(5): 87-92. |
LIU Y Q, LU J Y, LONG X L, et al. Dynamic identification of model parameters for energy storage batteries[J]. Journal of National University of Defense Technology, 2019, 41(5): 87-92. | |
25 | 刘志聪, 张彦会. 锂离子电池参数辨识及荷电状态的估算[J]. 储能科学与技术, 2022, 11(11): 3613-3622. |
LIU Z C, ZHANG Y H. Parameter identification and state of charge estimation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(11): 3613-3622. | |
26 | 杜帮华, 张宇, 吴铁洲, 等. 梯次利用锂离子电池等效模型参数在线辨识方法[J]. 储能科学与技术, 2021, 10(1): 342-348. |
DU B H, ZHANG Y, WU T Z, et al. An online identification method for equivalent model parameters of aging lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(1): 342-348. | |
27 | 熊瑞. 基于数据模型融合的电动车辆动力电池组状态估计研究[D]. 北京: 北京理工大学, 2014. |
XIONG R. Estimation of battery pack state for electric vehicles using model-data fusion approach[D]. Beijing: Beijing Institute of Technology, 2014. | |
28 | LIU X Y, LI W L, ZHOU A G. PNGV equivalent circuit model and SOC estimation algorithm for lithium battery pack adopted in AGV vehicle[J]. IEEE Access, 2018, 6: 23639-23647. |
29 | PAI K J. A reformatory model incorporating PNGV battery and three-terminal-switch models to design and implement feedback compensations of LiFePO4 battery chargers[J]. Electronics, 2019, 8(2): 126. |
30 | 王维强, 孙永强, 何源, 等. 磷酸铁锂锂离子电池用可变参数PNGV模型[J]. 电池, 2020, 50(1): 40-44. |
WANG W Q, SUN Y Q, HE Y, et al. PNGV model based on variable parameter for lithium iron phosphate Li-ion battery[J]. Battery Bimonthly, 2020, 50(1): 40-44. | |
31 | 陈正, 王志得, 牟文彪, 等. 基于PNGV模型与自适应卡尔曼滤波的铅炭电池荷电状态评估[J]. 储能科学与技术, 2023, 12(3): 941-950. |
CHEN Z, WANG Z D, MOU W B, et al. State-of-charge estimation of lead-carbon batteries based on the PNGV model and an adaptive Kalman filter algorithm[J]. Energy Storage Science and Technology, 2023, 12(3): 941-950. | |
32 | XIAO R X, SHEN J W, LI X Y, et al. Comparisons of modeling and state of charge estimation for lithium-ion battery based on fractional order and integral order methods[J]. Energies, 2016, 9(3): 184. |
33 | MENG J W, BOUKHNIFER M, DIALLO D. Comparative study of lithium-ion battery open-circuit-voltage online estimation methods[J]. IET Electrical Systems in Transportation, 2020, 10(2): 162-169. |
34 | 刘伟龙, 王丽芳, 廖承林, 等. 充电模态下电动汽车动力电池模型辨识[J]. 电工技术学报, 2017, 32(11): 198-207. |
LIU W L, WANG L F, LIAO C L, et al. Parameters identification method of battery model for electric vehicles under the charging mode[J]. Transactions of China Electrotechnical Society, 2017, 32(11): 198-207. | |
35 | ABOUDA S E, ELLOUMI M, KOUBAA Y, et al. Design of parametric estimation algorithm for Hammerstein-Wiener mathematical models[C]//2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). March 24-26, 2019, Sousse, Tunisia. IEEE, 2019: 371-375. |
36 | DING F, CHEN T W. Performance analysis of multi-innovation gradient type identification methods[J]. Automatica, 2007, 43(1): 1-14. |
37 | DING F, LIU P X, LIU G J. Multiinnovation least-squares identification for system modeling[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2010, 40(3): 767-778. |
38 | 刘艳君, 谢莉. 非均匀采样多率ARMAX系统RELS算法性能分析[J]. 控制工程, 2009, 16(4): 409-411, 415. |
LIU Y J, XIE L. Performance analysis of RELS identification for non-uniformly sampled mutlirate ARMAX systems[J]. Control Engineering of China, 2009, 16(4): 409-411, 415. | |
39 | GUO L, LJUNG L, PRIOURET P. Performance analysis of the forgetting factor RLS algorithm[J]. International Journal of Adaptive Control and Signal Processing, 1993, 7(6): 525-537. |
40 | CAMPI M. Performance of RLS Identification Algorithms with Forgetting Factor: A -Mixing Approach[J]. Journal of Mathematical Systems Estimation and Control, 1997, 7(1): 29-54. |
41 | PALEOLOGU C, BENESTY J, CIOCHINĂ S. A practical variable forgetting factor recursive least-squares algorithm[C]//2014 11th International Symposium on Electronics and Telecommunications (ISETC). November 14-15, 2014, Timisoara, Romania. IEEE, 2015: 1-4. |
42 | BERCU B, GODICHON A, PORTIER B. An efficient stochastic Newton algorithm for parameter estimation in logistic regressions[J]. SIAM Journal on Control and Optimization, 2020, 58(1): 348-367. |
43 | 曹鹏飞, 罗雄麟. 双率系统辅助模型框架下的随机牛顿递推辨识[J]. 控制与决策, 2015, 30(1): 117-124. |
CAO P F, LUO X L. Auxiliary-model-based stochastic Newton recursive identification for dual-rate system[J]. Control and Decision, 2015, 30(1): 117-124. | |
44 | LANDAU I. Unbiased recursive identification using model reference adaptive techniques[J]. IEEE Transactions on Automatic Control, 1976, 21(2): 194-202. |
45 | RAVI TEJA A V, VERMA V, CHAKRABORTY C. A new formulation of reactive-power-based model reference adaptive system for sensorless induction motor drive[J]. IEEE Transactions on Industrial Electronics, 2015, 62(11): 6797-6808. |
46 | QIN A K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 398-417. |
47 | CUI L Z, LI G H, LIN Q Z, et al. Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations[J]. Computers & Operations Research, 2016, 67: 155-173. |
48 | LIN P, JIN P, ZOU A X, et al. Real-time identification of partnership for a new generation of vehicles battery model parameters based on the model reference adaptive system[J]. International Journal of Energy Research, 2021, 45(6): 9351-9368. |
49 | 郑旭, 郭汾. 动力电池模型综述[J]. 电源技术, 2019, 43(3): 521-524. |
ZHENG X, GUO F. Overview of power battery model[J]. Chinese Journal of Power Sources, 2019, 43(3): 521-524. | |
50 | HE H W, XIONG R, GUO H Q, et al. Comparison study on the battery models used for the energy management of batteries in electric vehicles[J]. Energy Conversion and Management, 2012, 64: 113-121. |
[1] | Yue LI, Bo WANG, Nan WU. Preparation and lithium storage performance of graphene/Si/SiO x nanocomposites [J]. Energy Storage Science and Technology, 2023, 12(9): 2752-2759. |
[2] | Jiangwei SHEN, Canbiao ZHOU, Xing SHU, Zheng CHEN, Yonggang LIU. State of charge estimation for lithium batteries based on an improved electrochemical model at a wide temperature environment [J]. Energy Storage Science and Technology, 2023, 12(9): 2904-2916. |
[3] | Man CHEN, Zhixiang CHENG, Chunpeng ZHAO, Peng PENG, Qikai LEI, Kaiqiang JIN, Qingsong WANG. Numerical simulation study on explosion hazards of lithium-ion battery energy storage containers [J]. Energy Storage Science and Technology, 2023, 12(8): 2594-2605. |
[4] | Yu GUO, Yiwei WANG, Juan ZHONG, Jinqiao DU, Jie TIAN, Yan LI, Fangming JIANG. Fault diagnosis method for microinternal short circuits in lithium-ion batteries based on incremental capacity curve [J]. Energy Storage Science and Technology, 2023, 12(8): 2536-2546. |
[5] | Yun DI, Zhengzhu ZHOU, Huihong DANG, Zhihao GE. Modeling and verification of electric-thermal coupling in batteries based on ECM [J]. Energy Storage Science and Technology, 2023, 12(8): 2638-2648. |
[6] | Yuxin CHEN, Jiamu YANG, Cheng LIAN, Honglai LIU. Analysis of stable coating window of lithium battery electrode paste based on phase field models [J]. Energy Storage Science and Technology, 2023, 12(7): 2185-2193. |
[7] | Zhiwei CHEN, Weige ZHANG, Junwei ZHANG, Yanru ZHANG. Comprehensive health assessment and screening method of power battery pack based on visual characteristics of charge curves [J]. Energy Storage Science and Technology, 2023, 12(7): 2211-2219. |
[8] | Yikun WU, Jie HE, Le YANG, Weili SONG, Haosen CHEN. Multiscale and multiphysics theoretical model and computational method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2141-2154. |
[9] | Zenghui HAO, Xunliang LIU, Yuan MENG, Nan MENG, Zhi WEN. Effect of electrode interface microstructure on the performance of solid-state lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(7): 2095-2104. |
[10] | Birong TAN, Jianhua DU, Xianghu YE, Xin CAO, Chang QU. Overview of SOC estimation methods for lithium-ion batteries based on model [J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010. |
[11] | Xinyu LI, Xuebing HAN, Languang LU, Jianqiu LI, Minggao OUYANG. Optimization of an impedance model for power Li-ion batteries based on a large multiplier current pulse [J]. Energy Storage Science and Technology, 2023, 12(5): 1686-1694. |
[12] | Jialiang LIU, Cuijing GUO, Huanling WANG. Safety detection and verification of energy storage in lithium-ion battery based on fire fault tree model [J]. Energy Storage Science and Technology, 2023, 12(5): 1695-1704. |
[13] | Liyu ZHAO, Huanwu SUN, Shichuang LIU, Zhiyuan YAN. Energy consumption comparison and optimization of auxiliary power-battery heating system of heavy truck [J]. Energy Storage Science and Technology, 2023, 12(4): 1139-1147. |
[14] | Minyuan GUAN, Jianliang SHEN, Guohua XU, Shun TANG, Weixin ZHANG, Yuancheng CAO. Design and performance research of targeted-fire fighting equipment for lithium-ion battery energy storage system [J]. Energy Storage Science and Technology, 2023, 12(4): 1131-1138. |
[15] | Han ZHENG, Peipei LAI, Xiaohua TIAN, Zhuo SUN, Zhejuan ZHANG. Performance of large-scale silicon particles coated with multistage carbon as anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 23-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||