Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (10): 3145-3154.doi: 10.19799/j.cnki.2095-4239.2023.0394
• Energy Storage System and Engineering • Previous Articles Next Articles
Hong ZHANG(), Jin CHONG, Jinhui JIANG, Tingfeng CHEN, Zihua LIU, Fangxiang ZHONG(), Xiaowei ZHANG
Received:
2023-06-06
Revised:
2023-06-26
Online:
2023-10-05
Published:
2023-10-09
Contact:
Fangxiang ZHONG
E-mail:zhanghong@catl.com;zhongfx1997@163.com
CLC Number:
Hong ZHANG, Jin CHONG, Jinhui JIANG, Tingfeng CHEN, Zihua LIU, Fangxiang ZHONG, Xiaowei ZHANG. Analysis and research on hydrogen production from using water to extinguish the energy storage cabinet of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(10): 3145-3154.
Table 2
Calculation formula for hydrogen production rates under different boundaries"
目标对象 | 边界定义 | 电压范围 | ||
---|---|---|---|---|
最大边界 | 均值边界 | 最小边界 | ||
电芯 | E=2.334+0.236lgv+2.15×104v | E=2.764+0.236lgv+2.15×104v | E=3.396+0.236lgv+2.15×104v | E=2.8~3.6 V |
电箱 | E=2.334+0.236lgv+1.13×105v | E=2.764+0.236lgv+1.13×105v | E=3.396+0.236lgv+1.13×105v | E=145.6~187.2 V |
电柜 | E=2.334+0.236lgv+1.37×105v | E=2.764+0.236lgv+1.37×105v | E=3.396+0.236lgv+1.37×105v | E=1164.8~1497.6 V |
Table 4
Calculation formula of hydrogen production rate production under different electrochemical boundaries"
目标对象 | 边界定义 | 电压范围 | ||
---|---|---|---|---|
最大边界 | 均值边界 | 最小边界 | ||
电芯 | E=2.334+0.236lgv+5.68×102v | E=2.764+0.236lgv+5.68×102v | E=3.396+0.236lgv+5.68×102v | E=2.8~3.6 V |
电箱 | E=2.334+0.236lgv+2.98×103v | E=2.764+0.236lgv+2.98×103v | E=3.396+0.236lgv+2.98×103v | E=145.6~187.2 V |
电柜 | E=2.334+0.236lgv+3.62×103v | E=2.764+0.236lgv+3.62×103v | E=3.396+0.236lgv+3.62×103v | E=1164.8~1497.6 V |
Table 5
30% KOH aquatic solution calculates the calculation formula under different electrochemical boundaries"
目标对象 | 边界定义 | 电压范围 | ||
---|---|---|---|---|
最大边界 | 均值边界 | 最小边界 | ||
电芯 | E=2.334+0.236lgv+28.66v | E=2.764+0.236lgv+28.66v | E=3.396+0.236lgv+28.66v | E=2.8~3.6 V |
电箱 | E=2.334+0.236lgv+150.67v | E=2.764+0.236lgv+150.67v | E=3.396+0.236lgv+150.67v | E=145.6~187.2 V |
电柜 | E=2.334+0.236lgv+182.67v | E=2.764+0.236lgv+182.67v | E=3.396+0.236lgv+182.67v | E=1164.8~1497.6 V |
Table 6
Calculation formula for hydrogen production rate of different water qualities under different degrees of insulation damage"
绝缘破坏情况 | 不同水质下产氢速率计算公式 | |||
---|---|---|---|---|
自来水 | 海水 | 工业碱性电解水溶液 | ||
绝缘保护 | E=2.334+0.236lgv+1.37×105v | E=2.334+0.236lgv+3.62×103v | E(V)=2.334+0.236lgv+182.67v | |
电柜破坏,电箱保护 | E=2.334+0.236lgv+1.13×105v | E=2.334+0.236lgv+2.98×103v | E(V)=2.334+0.236lgv+150.67v | |
电柜破坏,电箱破坏 | E=2.334+0.236lgv+2.15×104v | E=2.334+0.236lgv+5.68×102v | E(V)=2.334+0.236lgv+28.66v |
Table 8
Hydrogen production rate values under different temperatures, water quality, and insulation damage conditions"
水质 | 绝缘破坏情况 | 不同温度下的产氢速率 | |||
---|---|---|---|---|---|
25 ℃ | 60 ℃ | 90 ℃ | |||
自来水 | 电柜绝缘,保护 | 0.011 | 0.05 | 0.14 | |
电柜破坏,电箱保护 | 0.0128 | 0.06 | 0.16 | ||
电柜破坏,电箱破坏 | 0.0666 | 0.32 | 0.96 | ||
海水 | 电柜绝缘,保护 | 0.42 | 1.87 | 5.40 | |
电柜破坏,电箱保护 | 0.504 | 2.24 | 6.56 | ||
电柜破坏,电箱破坏 | 1.75 | 9.15 | 28.70 | ||
30% KOH 水溶液 | 电柜绝缘,保护 | 8.23 | 10.00 | 29.12 | |
电柜破坏,电箱保护 | 37.01 | 44.40 | 141.44 | ||
电柜破坏,电箱破坏 | 107.04 | 128.72 | 449.28 |
Table 9
Hydrogen concentration inside a 20 foot energy storage container under extreme conditions"
水质 | 绝缘破坏情况 | 单个储能电柜产氢速率(按极端条件Umax=1497.6 V,T=90 °C)/(mL/s) | 20呎集装箱(空余体积为8.9 m3,储能电柜数量为3)内氢气浓度。 按极端条件:①内部通风失效,无通风;②内部所有储能电柜浸水 (氢气爆炸下限为4%,氢气浓度≥4%有爆炸风险) | |||
---|---|---|---|---|---|---|
1 h扑救 | 2 h扑救 | 3 h扑救 | ||||
自来水 | 电柜绝缘 保护 | 0.14 | 0.02% | 0.03% | 0.05% | |
电柜破坏 电箱保护 | 0.16 | 0.02% | 0.04% | 0.06% | ||
电柜破坏 电箱破坏 | 0.96 | 0.12% | 0.23% | 0.35% | ||
海水 | 电柜绝缘 保护 | 5.4 | 0.66% | 1.31% | 1.97% | |
电柜破坏 电箱保护 | 6.56 | 0.80% | 1.59% | 2.39% | ||
电柜破坏 电箱破坏 | 28.7 | 3.48% | 6.97% | 10.45% | ||
30%KOH溶液 | 电柜绝缘 保护 | 29.12 | 3.53% | 7.07% | 10.60% | |
电柜破坏 电箱保护 | 141.44 | 17.16% | 34.33% | 51.49% | ||
电柜破坏 电箱破坏 | 449.28 | 54.52% | 109.04% | 163.56% |
Table 10
Hydrogen concentration inside a 40 foot energy storage container under extreme conditions"
水质 | 绝缘破坏情况 | 单个储能电柜产氢速率(按极端条件Umax=1497.6 V,T=90 °C)/(mL/s) | 40呎集装箱(空余体积为32.7 m3,储能电柜数量为12)内氢气浓度。 按极端条件:①内部通风失效,无通风;②内部所有储能电柜浸水 (氢气爆炸下限为4%,氢气浓度≥4%有爆炸风险) | |||
---|---|---|---|---|---|---|
1 h扑救 | 2 h扑救 | 3 h扑救 | ||||
自来水 | 电柜绝缘 保护 | 0.14 | 0.02% | 0.04% | 0.06% | |
电柜破坏 电箱保护 | 0.16 | 0.02% | 0.04% | 0.06% | ||
电柜破坏 电箱破坏 | 0.96 | 0.13% | 0.25% | 0.38% | ||
海水 | 电柜绝缘 保护 | 5.4 | 0.71% | 1.43% | 2.14% | |
电柜破坏 电箱保护 | 6.56 | 0.87% | 1.73% | 2.60% | ||
电柜破坏 电箱破坏 | 28.7 | 3.79% | 7.58% | 11.37% | ||
30%KOH溶液 | 电柜绝缘 保护 | 29.12 | 3.85% | 7.69% | 11.54% | |
电柜破坏 电箱保护 | 141.44 | 18.69% | 37.37% | 56.06% | ||
电柜破坏 电箱破坏 | 449.28 | 59.35% | 118.71% | 178.06% |
1 | 来鑫, 陈权威, 顾黄辉, 等. 面向"双碳"战略目标的锂离子电池生命周期评价: 框架、方法与进展[J]. 机械工程学报, 2022, 58(22): 3-18. |
LAI X, CHEN Q W, GU H H, et al. Life cycle assessment of lithium-ion batteries for carbon-peaking and carbon-neutrality: Framework, methods, and progress[J]. Journal of Mechanical Engineering, 2022, 58(22): 3-18. | |
2 | 吴皓文, 王军, 龚迎莉, 等. 储能技术发展现状及应用前景分析[J]. 电力学报, 2021, 36(5): 434-443. |
WU H W, WANG J, GONG Y L, et al. Development status and application prospect analysis of energy storage technology[J]. Journal of Electric Power, 2021, 36(5): 434-443. | |
3 | 尚建壮. 储能技术及其市场前景[J]. 化学工业, 2019, 37(2): 30-34, 40. |
SHANG J Z. Challenges and progresses of energy storage technology and its application[J]. Chemical Industry, 2019, 37(2): 30-34, 40. | |
4 | 马静, 江依义, 沈旻, 等. 锂离子电池储能产业发展现状与对策建议[J]. 浙江化工, 2022, 53(12): 17-23. |
MA J, JIANG Y Y, SHEN M, et al. Development status and countermeasures of lithium ion battery energy storage industry[J]. Zhejiang Chemical Industry, 2022, 53(12): 17-23. | |
5 | 管敏渊, 沈建良, 徐国华, 等. 锂离子电池储能系统靶向消防装备设计与性能[J]. 储能科学与技术, 2023, 12(4): 1131-1138. |
GUAN M Y, SHEN J L, XU G H, et al. Design and performance research of targeted-fire fighting equipment for lithium-ion battery energy storage system[J]. Energy Storage Science and Technology, 2023, 12(4): 1131-1138. | |
6 | 邓啟熙. 锂离子电池储能系统安全技术发展现状[J]. 中外能源, 2022, 27(11): 93-99. |
DENG Q X. Development status of safety technology for lithium ion battery energy storage system[J]. Sino-Global Energy, 2022, 27(11): 93-99. | |
7 | 贾子润, 王震坡, 王秋诗, 等. 新能源汽车动力电池热失控机理和安全风险管控方法的研究[J]. 汽车工程, 2022, 44(11): 1689-1705. |
JIA Z R, WANG Z P, WANG Q S, et al. Study on thermal runaway mechanism and safety risk management and control method of power battery in new energy vehicles[J]. Automotive Engineering, 2022, 44(11): 1689-1705. | |
8 | 钱宇清, 左付山, 叶健, 等. 锂离子电池热失控机理分析及控制方法研究[J]. 电源技术, 2022, 46(11): 1227-1232. |
QIAN Y Q, ZUO F S, YE J, et al. Mechanism analysis and control method research on thermal runaway of lithium ion battery[J]. Chinese Journal of Power Sources, 2022, 46(11): 1227-1232. | |
9 | 于子轩, 孟国栋, 谢小军, 等. 磷酸铁锂储能电池过充热失控仿真研究[J]. 电气工程学报, 2022, 17(3): 30-39. |
YU Z X, MENG G D, XIE X J, et al. Simulation study on overcharging and out-of-control of ferrous lithium phosphate energy storage battery[J]. Journal of Electrical Engineering, 2022, 17(3): 30-39. | |
10 | 潘伟滔, 张玉, 周阳, 等. 氢气制备技术发展现状分析及展望[J]. 煤气与热力, 2022, 42(6): 67-74. |
PAN W T, ZHANG Y, ZHOU Y, et al. Analysis and prospect of development status of hydrogen preparation technology[J]. Gas & Heat, 2022, 42(6): 67-74. | |
11 | 李宝春, 孙少槐. 基于Nernst-Einstein和Arrhenius方程的电导率-温度关系研究[J]. 内蒙古工业大学学报(自然科学版), 2022, 41(5): 475-480. |
LI B C, SUN S H. Study on the relationship between conductivity and temperature based on Nernst-Einstein and Arrhenius equations[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2022, 41(5): 475-480. | |
12 | 贾志军, 马洪运, 吴旭冉, 等. 电化学基础(Ⅴ)——电极过程动力学及电荷传递过程[J]. 储能科学与技术, 2013, 2(4): 402-409. |
JIA Z J, MA H Y, WU X R, et al. Fundamentals of electrochemistry(Ⅴ)—Electrochemical kinetic and charge-transfer process for electrochemical reaction[J]. Energy Storage Science and Technology, 2013, 2(4): 402-409. | |
13 | KEECH P, TRIFAN D, BIRSS V. Synthesis and performance of sol-gel prepared Ni-YSZ cermet SOFC anodes[J]. ECS Meeting Abstracts, 2006, (1): 40. |
14 | ALDAZ A, FELIU J M. Eliezer Gileadi physical electrochemistry: Fundamentals, techniques and applications, Eliezer Gileadi. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim[J]. Journal of Electroanalytical Chemistry, 2012, 670: doi:10.1016/j.jelechem. 2012.01.002. |
15 | BU L, SHI L X. Seawater conductivity[J]. Journal of Ocean Technology, 1982, 1(3): 104-121. |
[1] | Qingsong ZHANG, Fangwei BAO, Jiangjao NIU. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2263-2270. |
[2] | Jin LI, Qingsong WANG, Depeng KONG, Xiaodong WANG, Zhenhua YU, Yanfei LE, Xinyan HUANG, Zhenkai HU, Houfu WU, Huabin FANG, Caowei, Shaoyu ZHANG, Ping ZHUO, Ye CHEN, Ziting LI, Wenxin MEI, Yue ZHANG, Lixiang ZHAO, Liang TANG, Zonghou HUANG, Chi CHEN, Yanhu LIU, Yuxi CHU, Xiaoyuan XU, Jin ZHANG, Yikai LI, Rong FENG, Biao YANG, Bo HU, Xiaoying YANG. Research progress on the safety assessment of lithium-ion battery energy storage [J]. Energy Storage Science and Technology, 2023, 12(7): 2282-2301. |
[3] | Jiayi ZHANG, Suting WENG, Zhaoxiang WANG, Xuefeng WANG. Solid electrolyte interphase (SEI) on graphite anode correlated with thermal runaway of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2105-2118. |
[4] | Jingxuan MA, Yuhang SONG, Shuang SHI, Nawei LYU, Kangyong YIN, Guirong WANG, Kaiyuan DU, Yang JIN. Early warning of the thermal runaway of liquid-cooled LiFePO4 battery module based on the sudden change of air-pressure signal detection [J]. Energy Storage Science and Technology, 2023, 12(7): 2246-2255. |
[5] | Xijiang SHEN, Qiangling DUAN, Peng QIN, Qingsong WANG, Jinhua SUN. Experimental study on thermal runaway mitigation and heat transfer characteristics of ternary lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1862-1871. |
[6] | Luhao HAN, Ziyang WANG, Xiaolong HE, Chunshan HE, Xiaolong SHI, Bin YAO. The effect of water mist strategies on thermal runaway fire suppression of large-capacity NCM lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(5): 1664-1674. |
[7] | Liyue HU, Xingyan YAO. Thermal runaway of lithium-ion batteries based on orthogonal test [J]. Energy Storage Science and Technology, 2023, 12(4): 1268-1277. |
[8] | Kuijie LI, Ping LOU, Minyuan GUAN, Jinlong MO, Weixin ZHANG, Yuancheng CAO, Shijie CHENG. A review of multi-dimensional signal evolution and coupling mechanism of lithium-ion battery thermal runaway [J]. Energy Storage Science and Technology, 2023, 12(3): 899-912. |
[9] | Zhixiang CHENG, Wei CAO, Bo HU, Yunfang CHENG, Xin LI, Lihua JIANG, Kaiqiang JIN, Qingsong WANG. Thermal runaway and explosion propagation characteristics of large lithium iron phosphate battery for energy storage station [J]. Energy Storage Science and Technology, 2023, 12(3): 923-933. |
[10] | Zhifu WANG, Wei LUO, Yuan YAN, Song XU, Wenmei HAO, Conglin ZHOU. Fault diagnosis of lithium-ion battery sensors using GAPSO-FNN [J]. Energy Storage Science and Technology, 2023, 12(2): 602-608. |
[11] | Xiaolong HE, Xiaolong SHI, Ziyang WANG, Luhao HAN, Bin YAO. Experimental study on thermal runaway characteristics of vehicle NCM lithium-ion batteries under overcharge, overheating, and their combined effects [J]. Energy Storage Science and Technology, 2023, 12(1): 218-226. |
[12] | Hang YU, Ying ZHANG, Chaohang XU, Sihan YU. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems [J]. Energy Storage Science and Technology, 2022, 11(8): 2653-2663. |
[13] | Laifeng SONG, Wenxin MEI, Zhuangzhuang JIA, Qingsong WANG. Analysis of thermal runaway characteristics of 280 Ah large LiFePO4 battery under adiabatic conditions [J]. Energy Storage Science and Technology, 2022, 11(8): 2411-2417. |
[14] | Tao YIN, Longzhou JIA, Xiuliang CHANG, Zuoqiang DAI, Lili ZHENG. Research on thermal safety of soft-pack LiFePO4 battery after high-voltage float charge [J]. Energy Storage Science and Technology, 2022, 11(8): 2546-2555. |
[15] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||