Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (10): 3131-3144.doi: 10.19799/j.cnki.2095-4239.2023.0261
• Energy Storage System and Engineering • Previous Articles Next Articles
Yuanyuan JIAO1(), Yifei WANG1, Xingjian DAI1(), Hualiang ZHANG1, Haisheng CHEN1,2
Received:
2023-04-25
Revised:
2023-05-31
Online:
2023-10-05
Published:
2023-10-09
Contact:
Xingjian DAI
E-mail:jiaoyuanyuan@iet.cn;daixingjian@iet.cn
CLC Number:
Yuanyuan JIAO, Yifei WANG, Xingjian DAI, Hualiang ZHANG, Haisheng CHEN. Overview of the motor-generator rotor cooling system in a flywheel energy storage system[J]. Energy Storage Science and Technology, 2023, 12(10): 3131-3144.
Table 1
A summary of FESS research groups"
研究小组 | 国别 | 转子材料 | E/kWh | P/kW | 应用 |
---|---|---|---|---|---|
阿尔伯塔大学 | 加拿大 | — | — | — | 铁路 |
得克萨斯大学奥斯汀分校 | 美国 | 复合材料 | 130 | 2000 | 铁路 |
得克萨斯农工大学 | 美国 | 钢 | 100 | 100 | 电网 |
弗吉尼亚大学 | 美国 | 复合材料 | 1 | — | — |
哈尔滨工程大学 | 中国 | 复合材料 | 10 | — | 风电/车辆 |
汉阳大学 | 韩国 | 复合材料 | 35 | — | — |
华北电力大学(北京) | 中国 | 复合材料 | 50 | 500 | 风电/电网 |
华中科技大学 | 中国 | — | 2.78 | 350 | 风电 |
加州大学伯克利分校 | 美国 | 钢 | 0.14 | 30 | — |
江苏大学 | 中国 | — | — | 130 | 车辆 |
伦敦大学学院 | 英国 | 钢 | 5 | 10 | — |
铁道技术研究所 | 日本 | 复合材料 | 100 | 300 | 可再生能源 |
维也纳工业大学 | 奥地利 | 复合材料 | 5 | — | — |
乌普萨拉大学 | 瑞典 | 复合材料 | 0.867 | — | — |
谢菲尔德大学 | 英国 | — | 10 | 500 | 电网 |
Table 2
A summary of commercial FESS systems"
制造商 | 转子材料 | E/kWh | P/kW | 应用 |
---|---|---|---|---|
Active Power | 钢 | 2.83 | 675 | 多方向 |
Adaptive Balancing Power | 复合材料 | 12 | 400 | 车辆 |
Amber Kinetics | 钢 | 32 | 8 | 多方向 |
Beacon Power Gen 4 | 复合材料 | 25 | 100 | 调频 |
Boeing | 复合材料 | 5 | 3 | — |
Calnetix/Vycon | 钢 | 0.52 | 125 | UPS |
Caterpillar | — | 5 | 675 | UPS |
Dynamic Boosting System | 钢 | — | — | — |
Gerotor | — | 0.065 | 50 | — |
GKN Hybrid Power | 复合材料 | 0.44 | 120 | 车辆 |
Gyrotricity | 钢 | 5 | 100 | 调频/铁路 |
Helix Power | 复合材料 | 25 | 1000 | 电网 |
Hitachi ABB | — | — | 2000 | 风电 |
Kinetic Traction Systems | 复合材料 | — | 333 | 多方向 |
Levistor Flywheel | 钢 | 5 | 100 | — |
Oxto Energy | — | 7.5 | 65 | 多方向 |
Piller Group | 钢 | 2.9 | 625 | 多方向 |
Power Thru | 复合材料 | 0.63 | 190 | UPS |
Punch Flybrid | 钢 | 0.167 | — | 多方向 |
Ricardo TorqStor | 复合材料 | 0.056 | 101 | 车辆 |
Rosetta T2 | 复合材料 | 4 | 500 | 能量回收 |
Rotonix | 复合材料 | 12 | 1100 | 多方向 |
Stornetic | 复合材料 | 4 | 22 | 电网/铁路 |
Temporal Power | 钢 | 50 | 100~500 | 调压 |
Vycon | 钢 | 1.74 | 350 | 多方向 |
北京泓慧 | — | 35 | 1000 | 多方向 |
华驰动能 | 钢 | 125 | 500 | 多方向 |
深圳坎德拉 | 钢 | 35 | 1000 | 多方向 |
1 | 胡喆. 科技部等九部门印发《科技支撑碳达峰碳中和实施方案(2022—2030年)》[J]. 绿色科技, 2022(15): 250. |
2 | 谭显东, 刘俊, 徐志成, 等. "双碳"目标下"十四五"电力供需形势[J]. 中国电力, 2021, 54(5): 1-6. |
TAN X D, LIU J, XU Z C, et al. Power supply and demand balance during the 14th five-year plan period under the goal of carbon emission peak and carbon neutrality[J]. Electric Power, 2021, 54(5): 1-6. | |
3 | 张金平, 周强, 王定美, 等. "双碳"目标下新型电力系统发展路径研究[J]. 华电技术, 2021, 43(12): 46-51. |
ZHANG J P, ZHOU Q, WANG D M, et al. Research on the development path of new power system under the target of "double carbon"[J]. IntegratedIntelligent Energy, 2021, 43(12): 46-51. | |
4 | RAHMAN M M, ONI A O, GEMECHU E, et al. Assessment of energy storage technologies: A review[J]. Energy Conversion and Management, 2020, 223: 113295. |
5 | 肖先勇, 郑子萱. "双碳"目标下新能源为主体的新型电力系统: 贡献、关键技术与挑战[J]. 工程科学与技术, 2022, 54(1): 47-59. |
XIAO X Y, ZHENG Z X. New power systems dominated by renewable energy towards the goal of emission peak &carbon neutrality: Contribution, key techniques, and challenges[J]. Advanced Engineering Sciences, 2022, 54(1): 47-59. | |
6 | 吴皓文, 王军, 龚迎莉, 等. 储能技术发展现状及应用前景分析[J]. 电力学报, 2021, 36(5): 434-443. |
WU H W, WANG J, GONG Y L, et al. Development status and application prospect analysis of energy storage technology[J]. Journal of Electric Power, 2021, 36(5): 434-443. | |
7 | 戴兴建, 魏鲲鹏, 张小章, 等. 飞轮储能技术研究五十年评述[J]. 储能科学与技术, 2018, 7(5): 765-782. |
DAI X J, WEI K P, ZHANG X Z, et al. A review on flywheel energy storage technology in fifty years[J]. Energy Storage Science and Technology, 2018, 7(5): 765-782. | |
8 | 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076. |
CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076. | |
9 | 戴兴建, 姜新建, 张剀. 飞轮储能系统技术与工程应用[M]. 北京: 化学工业出版社, 2021. |
DAI X J, JIANG X J, ZHANG K. Flywheel energy storage technology and engineering application[M]. Beijing: Chemical Industry Press, 2021. | |
10 | CHOUDHURY S. Flywheel energy storage systems: A critical review on technologies, applications, and future prospects[J]. International Transactions on Electrical Energy Systems, 2021, 31(9): doi: 10.1002/2050-7038.13024. |
11 | LI X J, PALAZZOLO A. A review of flywheel energy storage systems: State of the art and opportunities[J]. Journal of Energy Storage, 2022, 46: 103576. |
12 | PULLENK, AMIRYARME. High speed flywheels[J]. Encyclopedia of Energy Storage, 2023, 3: 25-40, |
13 | SU J Y, XU W, ZHANG Y S, et al. Design and analysis of high-speed permanent magnet machine with low rotor loss for flywheel energy storage system[C]//2020 23rd International Conference on Electrical Machines and Systems (ICEMS). November 24-27, 2020, Hamamatsu, Japan. IEEE, 2020: 851-856. |
14 | 董剑宁, 黄允凯, 金龙, 等. 高速永磁电机设计与分析技术综述[J]. 中国电机工程学报, 2014, 34(27): 4640-4653. |
DONG J N, HUANG Y K, JIN L, et al. Review on high speed permanent magnet machines including design and analysis technologies[J]. Proceedings of the CSEE, 2014, 34(27): 4640-4653. | |
15 | 陈磊, 王亮, 林曦鹏, 等. 飞轮储能热管理研究现状分析[J]. 中外能源, 2019, 24(2): 84-91. |
CHEN L, WANG L, LIN X P, et al. Analysis on research status of thermal management of flywheel energy storage system[J]. Sino-Global Energy, 2019, 24(2): 84-91. | |
16 | 汤勇, 孙亚隆, 郭志军, 等. 电机散热系统的研究现状与发展趋势[J]. 中国机械工程, 2021, 32(10): 1135-1150. |
TANG Y, SUN Y L, GUO Z J, et al. Development status and perspective trend of motor cooling systems[J]. China Mechanical Engineering, 2021, 32(10): 1135-1150. | |
17 | 张凤阁, 杜光辉, 王天煜, 等. 高速电机发展与设计综述[J]. 电工技术学报, 2016, 31(7): 1-18. |
ZHANG F G, DU G H, WANG T Y, et al. Review on development and design of high speed machines[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 1-18. | |
18 | GERADA D, MEBARKI A, BROWN N L, et al. Design aspects of high-speed high-power-density laminated-rotor induction machines[J]. IEEE Transactions on Industrial Electronics, 2011, 58(9): 4039-4047. |
19 | RUOHO S, KOLEHMAINEN J, IKAHEIMO J, et al. Interdependence of demagnetization, loading, and temperature rise in a permanent-magnet synchronous motor[J]. IEEE Transactions on Magnetics, 2010, 46(3): 949-953. |
20 | 方奇灏. 高速磁悬浮永磁电机的损耗与温度场分析[D]. 武汉: 武汉理工大学, 2021. |
FANG Q H. Loss and temperature field analysis of high-speed magneticsuspension permanent magnet motor[D]. Wuhan: Wuhan University of Technology, 2021. | |
21 | SAHIN F, TUCKEY A M, VANDENPUT A J A. Design, development and testing of a high-speed axial-flux permanent-magnet machine[C]//ConferenceRecord of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat.No.01CH37248).September 30 - October 4, 2001, Chicago, IL, USA. IEEE, 2002: 1640-1647. |
22 | HUYNH C, ZHENG L P, MCMULLEN P. Thermal performance evaluation of a high-speed flywheel energy storage system[C]//IECON2007-33rd Annual Conference of the IEEE Industrial Electronics Society.November 5-8, 2007, Taipei, China. IEEE, 2008: 163-168. |
23 | 佟文明, 侯明君, 孙鲁, 等. 基于精确子域模型的带护套转子高速永磁电机转子涡流损耗解析方法[J]. 电工技术学报, 2022, 37(16): 4047-4059. |
TONG W M, HOU M J, SUN L, et al. Analytical method of rotor eddy current loss for high-speed surface-mounted permanent magnet motor with rotor retaining sleeve[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4047-4059. | |
24 | 佟文明, 侯明君, 鹿吉文, 等. 基于负载磁场考虑涡流反作用的带护套高速永磁电机转子涡流损耗解析模型[J]. 中国电机工程学报, 2022, 42(24): 9072-9084. |
TONG W M, HOU M J, LU J W, et al. Analytical model of rotor eddy current loss ofsheathedhigh-speed permanent magnet motor consideringeddycurrent reaction based on loadmagnetic field[J]. Proceedings of the CSEE, 2022, 42(24): 9072-9084. | |
25 | 卓亮, 孙鲁, 施道龙, 等. 考虑温度变化的高温高速永磁电机转子涡流损耗半解析模型及实验验证[J]. 中国电机工程学报, 2021, 41(24): 8305-8315. |
ZHUO L, SUN L, SHI D L, et al. Semi-analytical model and experimental verification of eddy current loss of rotor of high temperature and high speed permanent magnet motorconsidering temperature change[J]. Proceedings of the CSEE, 2021, 41(24): 8305-8315. | |
26 | 孙权贵, 邓智泉, 张忠明. 基于齿槽效应的高速永磁电机转子涡流损耗解析计算[J]. 电工技术学报, 2018, 33(9): 1994-2004. |
SUN Q G, DENG Z Q, ZHANG Z M. Analytical calculation of rotor eddy current losses in high speed permanent magnet machines accounting for influence of slot opening[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 1994-2004. | |
27 | 邢泽智, 王秀和, 赵文良, 等. 表贴式永磁同步电机电磁激振力波计算与定子振动特性分析[J]. 中国电机工程学报, 2021, 41(14): 5004-5013. |
XING Z Z, WANG X H, ZHAO W L, et al. Calculation of electromagnetic force waves and analysis of stator vibration characteristics of surface mount permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2021, 41(14): 5004-5013. | |
28 | 郑军强, 赵文祥, 吉敬华, 等. 分数槽集中绕组永磁电机低谐波设计方法综述[J]. 中国电机工程学报, 2020, 40(S1): 272-280. |
ZHENG J Q, ZHAO W X, JI J H, et al. Review on design methods of low harmonics of fractional-slot concentrated-windings permanent-magnet machine[J]. Proceedings of the CSEE, 2020, 40(S1): 272-280. | |
29 | LI L, LI W L, LI D, et al. Influence of sleeve thickness and various structures on eddy current losses of rotor parts and temperature field in surface mounted permanent-magnet synchronous motor[J]. IET Electric Power Applications, 2018, 12(8): 1183-1191. |
30 | KULKARNI D P, RUPERTUS G, CHEN E. Experimental investigation of contact resistance for water cooled jacket for electric motors and generators[J]. IEEE Transactions on Energy Conversion, 2012, 27(1): 204-210. |
31 | SATRUSTEGUI M. Thermal and hydraulic design of water-based cooling systems for electrical machines[D]. Pamplona: Universidad de Navarra, 2018. |
32 | LI Y, FAN T, SUN W, et al. Experimental research on the oil cooling of the end winding of the motor[C]//2016 IEEE Energy Conversion Congress and Exposition (ECCE). September 18-22, 2016, Milwaukee, WI, USA. IEEE, 2017: 1-4. |
33 | XIE Y Y, CHEN L K, WANG X D, et al. In-slot direct cooling design and optimization for electric machines[C]//2021 IEEE International Electric Machines & Drives Conference (IEMDC). May 17-20, 2021, Hartford, CT, USA. IEEE, 2021: 1-8. |
34 | CHONG Y C, STATON D, GAI Y H, et al. Review of advanced cooling systems of modern electric machines for EMobility application[C]//2021 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD). April 8-9, 2021, Modena, Italy. IEEE, 2021: 149-154. |
35 | 王晨, 张卓然, 刘业. 高转矩密度转子磁分路混合励磁电机转子涡流损耗及散热优化[J]. 中国电机工程学报, 2021, 41(21): 7476-7486. |
WANG C, ZHANG Z R, LIU Y. Optimization of rotor eddy-current loss and heat dissipation for high torque density hybrid excitation synchronous motor with magnetic shunting rotor[J]. Proceedings of the CSEE, 2021, 41(21): 7476-7486. | |
36 | LEE K H, CHA H R, KIM Y B. Development of an interior permanent magnet motor through rotor cooling for electric vehicles[J]. Applied Thermal Engineering, 2016, 95: 348-356. |
37 | HAN X, CUI X, MA K, et al. Carbon nano-capsule coating for high-power LED thermal management[J]. Materials Research Innovations, 2015, 19(S5): 1112-1116. |
38 | ZHANG H, LOU P, LIU F. Effect of carbon nanotube structure on properties of infrared radiation heat sink coatings[J]. Shanghai Coat, 2016, 54: 1-5. |
39 | MAO Q J, GAO Y, NAIRIMUDELE, et al. Effect of conductivity and radiation on heat dissipation performance of coating[C]//HANY. Chinese Materials Conference.Singapore: Springer, 2018: 749-757. |
40 | 陈磊, 王亮, 陈海生, 等. 一种非接触式飞轮储能转子真空散热系统:CN208623465U[P]. 2019-03-19. |
CHEN L, WANG L, CHEN H S, et al. Non-contact flywheel energy storage rotor vacuum cooling system: CN208623465U[P]. 2019-03-19. | |
41 | 阮琳, 王军. 易散热飞轮储能系统及其转子真空下温升抑制方法: CN114157090A[P]. 2022-03-08. |
RUAN L, WANG J. Flywheel energy storage system easy todissipateheat and rotorvacuum temperature rise suppressionmethodthereof: CN114157090A[P]. 2022-03-08. | |
42 | HEMMATI R, WU F, EL-REFAIE A. Survey of insulation systems in electrical machines[C]//2019 IEEE International Electric Machines & Drives Conference (IEMDC). May 12-15, 2019, San Diego, CA, USA. IEEE, 2019: 2069-2076. |
43 | KULAN M C, ŞAHIN S, BAKER N J. An overview of modern thermo-conductive materials for heat extraction in electrical machines[J]. IEEE Access, 2020, 8: 212114-212129. |
44 | WONG C P, BOLLAMPALLY R S. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging[J]. Journal of Applied Polymer Science, 1999, 74(14): 3396-3403. |
45 | LI H D, KLONTZ K W, FERRELL V E, et al. Thermal models and electrical machine performance improvement using encapsulation material[J]. IEEE Transactions on Industry Applications, 2017, 53(2): 1063-1069. |
46 | SEQUEIRA S, BENNION K, COUSINEAU J E, et al. Validation and parametric investigations using a lumped thermal parameter model of an internal permanent magnet motor[C]//Proceedings of ASME2020International Technical Conference and Exhibition onPackagingandIntegration of Electronicand Photonic Microsystems, October 27-29, 2020, Virtual, Online. 2020 |
47 | NATEGH S, KRINGS A, WALLMARK O, et al. Evaluation of impregnation materials for thermal management of liquid-cooled electric machines[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 5956-5965. |
48 | PENROSE H W, WITTMUSS D. Evaluation of vacuum encapsulation systems for integral motors[C]//2011 Electrical Insulation Conference (EIC). June 5-8, 2011, Annapolis, MD, USA. IEEE, 2011: 180-183. |
49 | POPESCU M, STATON D A, BOGLIETTI A, et al. Modern heat extraction systems for power traction machines—areview[J]. IEEE Transactions on Industry Applications, 2016, 52(3): 2167-2175. |
50 | WROBEL R, SIMPSON N, MELLOR P H, et al. Design of a brushless PM starter generator for low-cost manufacture and a high-aspect-ratio mechanical space envelope[J]. IEEE Transactions on Industry Applications, 2017, 53(2): 1038-1048. |
51 | LIU C Y, ZHENG X Q, YIN M. The design of H level thermal-conductivity composite insulation structure for explosion-proof motor with high efficiency and low voltage[C]//2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). July 19-22, 2015, Sydney, NSW, Australia. IEEE, 2015: 624-627. |
52 | PECHÁNEK R, BOUZEK L. Analyzing of two types water cooling electric motors using computational fluid dynamics[C]//2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC).September 4-6, 2012, Novi Sad, Serbia. IEEE, 2013: LS2e.4-1. |
53 | BENNION K. Electric motor thermal management RD NREL [R]. Golden, CO (United States), 2015 |
54 | ARSENEAUX J, ANSBIGIAN D, DESANTIS D, et al. Self-pumping flywheel cooling system, US9856941[P/OL]. |
55 | 陈一, 罗学明. 一种高速飞轮储能发动机散热装置: CN112838712A[P]. 2021-05-25. |
CHEN Y, LUO X. Heat dissipation device of high-speed flywheel energy storage engine: CN112838712A[P]. 2021-05-25.. | |
56 | 李文圣, 崔小兵, 李云飞. 飞轮储能器的散热系统, CN104578595B[P/OL]. |
LI W S, CUI X B, LI Y F. Heat dissipation system of flywheel energy storage device, CN104578595B[P/OL]. | |
57 | GAI Y H, MA C W, XU Y M, et al. Numerical prediction and measurement of pressure drop and heat transfer in a water-cooled hollow-shaft rotor for a traction motor application[J]. IET Electric Power Applications, 2021, 15(4): 476-486. |
58 | GAI Y H, WIDMER J D, STEVEN A, et al. Numerical and experimental calculation of CHTC in an oil-based shaft cooling system for a high-speed high-power PMSM[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 4371-4380. |
59 | GAI Y. A hollow-shaft rotor cooling system for automotive traction motors[D]. Newcastle University, 2020. |
60 | GAI Y H, CHONG Y C, ADAM H, et al. Thermal analysis of an oil-cooled shaft for a 30 000 r/Min automotive traction motor[J]. IEEE Transactions on Industry Applications, 2020, 56(6): 6053-6061. |
61 | GAI Y H, KIMIABEIGI M, CHONG Y C, et al. Cooling of automotive traction motors: Schemes, examples, and computation methods[J]. IEEE Transactions on Industrial Electronics, 2019, 66(3): 1681-1692. |
62 | GRONWALD P O, KERN T A. Traction motor cooling systems: A literature review and comparative study[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2892-2913. |
63 | 苏森, 王志强, 陈胜林, 等. 飞轮储能系统, CN115360849A[P/OL]. |
SU S, WANG Z Q, CHEN S L, et al. Flywheel energy storage system, CN115360849A[P/OL]. | |
64 | WANG H M, LIU X C, KANG M, et al. Oil injection cooling design for the IPMSM applied in electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2022, 8(3): 3427-3440. |
65 | VELTRI J A, MACNEIL C, LAMPE A. Cooled Flywheel Apparatus, WO2014067018[P/OL]. |
66 | VELTRI J A, MACNEIL C, LAMPE A. Cooled flywheel apparatus having a stationary cooling member to cool a flywheel annular drive shaft, US10508710[P/OL]. |
67 | 戴兴建, 张剀, 徐旸. 电机转子中空轴内导热油冷却装置及飞轮储能电机: CN110198092A[P]. 2020-12-15. |
DAI X J, ZHANG K, XU Y. Heat conducting oil cooling device in hollow shaft of motor rotor and flywheel energy storage motor: CN110198092A[P]. 2020-12-15.. | |
68 | 戴兴建, 胡东旭, 王艺斐, 等. 一种飞轮电机的可调控泵油冷却方法:CN113258714B[P]. 2021-11-09. |
DAI X J, HU D X, WANG Y F, et al. Flywheel motor and adjustable and controllable pump oil cooling method thereof: CN113258714B[P]. 2021-11-09.. | |
69 | 张彬, 王佳傲, 王国涛. 一种飞轮储能电机转子冷却装置: CN211429027U[P]. 2020-09-04. |
70 | 张彬, 王国涛. 一种飞轮储能电机转子冷却及消除泡沫装置: CN217590414U[P]. 2022-10-14. |
71 | 王志强, 苏森, 韩坤, 等. 具有主动散热功能的磁悬浮储能飞轮和储能设备: CN114448162B[P]. 2022-06-07. |
72 | 陈磊, 王亮, 陈海生, 等. 一种飞轮储能转子真空散热系统:CN108900039A[P]. 2018-11-27. |
73 | PAN W L, YAN S Y, ZHANG T G, et al. Numerical analysis of heat transfer characteristics in a flywheel energy storage system using jet cooling[J]. Applied Thermal Engineering, 2023, 224: 119881. |
74 | HASSETT T, HODOWANEC M. Electric motor with heat pipes, US7569955[P/OL]. |
75 | 陈中帅. 电机导热散热节能技术及应用研究[D]. 上海: 东华大学, 2016. |
CHEN Z S. Research on energy-saving technology andapplicationofheat conduction and heatdissipationofmotor[D]. Shanghai: Donghua University, 2016. | |
76 | FEDOSEYEV L, PEARCE E M, JR. Rotor Assembly with Heat Pipe Cooling System, US2014368064[P/OL]. |
77 | 徐伟, 杜光辉, 叶才勇. 一种转子轴内蒸发冷却高速冷却永磁电机: CN108258852A[P]. 2018-07-06. |
78 | 王艺斐, 王亮, 戴兴建, 等. 一种飞轮储能转子散热系统:CN1125 31962B[P]. 2022-06-28. |
79 | 高建民, 李法敬, 史晓军, 等. 一种基于轴芯热管冷却的高速高精度电主轴: CN105598477B[P]. 2017-07-14. |
GAO J M, LI F J, SHI X J, et al. High-speed high-accuracyelectric spindle based on spindle core heat pipe cooling: CN105598477B[P]. 2017-07-14.. | |
80 | LI F J, GAO J M, SHI X J, et al. Experimental investigation of single loop thermosyphons utilized in motorized spindle shaft cooling[J]. Applied Thermal Engineering, 2018, 134: 229-237. |
81 | JUNG S, LEE J, PARK B, et al. Double-evaporator thermosiphon for cooling 100 kWh class superconductor flywheel energy storage system bearings[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 2103-2106. |
[1] | Yongming ZHAO, Qingquan QIU, Zipan NIE, Xiaoyue LUO, Liye XIAO. Design and operating characteristics of a grid-connected motor-converting system for gravity/flywheel integrated energy storage [J]. Energy Storage Science and Technology, 2022, 11(12): 3895-3905. |
[2] | Lan ZHAO, Guozhen WANG. Research progress on composite heat transfer enhancement technology of phase change heat storage system [J]. Energy Storage Science and Technology, 2022, 11(11): 3534-3547. |
[3] | Xing ZHANG, Peng RUAN, Liuli ZHANG, Gangling TIAN, Baohong ZHU. Performance test of flywheel energy storage device [J]. Energy Storage Science and Technology, 2021, 10(5): 1674-1678. |
[4] | Xing ZHANG, Peng RUAN, Liuli ZHANG, Juan LI, Gangling TIAN, Dongxu HU, Baohong ZHU. Application analysis of flywheel energy storage in thermal power frequency modulation in central China [J]. Energy Storage Science and Technology, 2021, 10(5): 1694-1700. |
[5] | Bin LIU, Ziqiang HU, Kuining LI, Yi XIE, Jintao ZHENG. Experimental and simulation on battery thermal management based on a large flat heat pipe [J]. Energy Storage Science and Technology, 2021, 10(4): 1364-1373. |
[6] | Wencan LI, Jingliang LV, Xinjian JIANG, Xinzhen ZHANG. Control method for fault ride-through of flywheel energy storage system based on multi-mode coordination [J]. Energy Storage Science and Technology, 2020, 9(6): 1905-1916. |
[7] | LI Xinyu, LI Peng, HAN Zhongxian, LIU Tao, WANG Lei, CHEN Lin. Effect of bending angle on heat transfer performance of flat heat pipe [J]. Energy Storage Science and Technology, 2020, 9(3): 840-847. |
[8] | LI Shusheng, FU Yongling, LIU Ping, WANG Zhiqiang. Research on disturbance analysis and detection method for the magnetically suspended flywheel-based PMSM system [J]. Energy Storage Science and Technology, 2018, 7(5): 794-803. |
[9] | LI Shusheng, FU Yongling, LIU Ping, DAI Xingjian, LI Yunlong. Research on twin trawling charging-discharging experimental method for the magnetically suspended flywheel-based dynamic UPS system [J]. Energy Storage Science and Technology, 2018, 7(5): 828-833. |
[10] | WANG Dajie, SUN Zhenhai, CHEN Ying, LI Shengfei, ZHAO Sifeng, WEN Haiping. Application of array 1 MW flywheel energy storage system in rail transit [J]. Energy Storage Science and Technology, 2018, 7(5): 841-846. |
[11] | WANG Dajie, CHEN Ying, TANG Yingwei, LI Shengfei, ZHAO Sifeng. Application and research of flywheel energy storage system in electrified railway [J]. Energy Storage Science and Technology, 2018, 7(5): 853-860. |
[12] | LIU Pei, WEI Kunpeng, DAI Xingjian. Analysis and experimental study on the shaft of a 1MW / 60MJ flywheel energy storage system#br# [J]. Energy Storage Science and Technology, 2017, 6(6): 1257-. |
[13] | WANG Yong1, DAI Xingjian1, LI Zhenzhi2. Structural design of rotor and shaft in FESS with 60 MJ energy capacity [J]. Energy Storage Science and Technology, 2016, 5(4): 503-508. |
[14] | XING Xiangshang, JIANG Xinjian. Introduction to motors and controllers of flywheel energy storage systems [J]. Energy Storage Science and Technology, 2015, 4(2): 147-152. |
[15] | HAN Yongjie, REN Zhengyi, WU Bin, LI Chong. Flywheel energy storage systems for a 1.5 MW wind generator applications [J]. Energy Storage Science and Technology, 2015, 4(2): 198-202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||