Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (10): 3120-3130.doi: 10.19799/j.cnki.2095-4239.2023.0281
• Energy Storage System and Engineering • Previous Articles Next Articles
Yu CAO1(), Tong JIANG1, Chi LIU1, Yong YANG2, Wenfei LIU2, Wenying LIU1()
Received:
2023-04-26
Revised:
2023-05-09
Online:
2023-10-05
Published:
2023-10-09
Contact:
Wenying LIU
E-mail:542423759@qq.com;liuwenyingls@sina.com
CLC Number:
Yu CAO, Tong JIANG, Chi LIU, Yong YANG, Wenfei LIU, Wenying LIU. Electrochemical energy storage participation in primary frequency regulation control strategy considering frequency characteristics and energy storage battery state[J]. Energy Storage Science and Technology, 2023, 12(10): 3120-3130.
Table 6
The state of the energy storage battery pack before and after participating in frequency regulation under step load"
电池组 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | 整体 |
---|---|---|---|---|---|
平均分配ΔSOC | 3.82% | 3.82% | 3.82% | 3.82% | 3.82% |
本文策略ΔSOC | 3.03% | 3.18% | 3.86% | 5.21% | 3.82% |
本文策略循环区间 | 61.97%~65.0% | 51.82%~55.0% | 51.14%~55.0% | 59.79%~65.0% | 56.18%~60.0% |
平均分配循环区间 | 61.18%~65.0% | 51.18%~55.0% | 51.18%~55.0% | 61.18%~65.0% | 56.18%~60.0% |
Table 8
Energy storage battery pack state before and after participation in frequency regulation under continuous load disturbance"
电池组 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | 整体 |
---|---|---|---|---|---|
平均分配ΔSOC | 3.95% | 3.95% | 3.95% | 3.95% | 3.95% |
本文策略ΔSOC | 3.66% | 2.77% | 3.32% | 6.04% | 3.95% |
本文策略循环区间 | 61.34%~65.0% | 52.23%~55.0% | 51.68%~55.0% | 58.96%~65.0% | 56.05%~60.0% |
平均分配循环区间 | 61.05%~65.0% | 51.05%~55.0% | 51.05%~55.0% | 61.05%~65.0% | 56.05%~60.0% |
1 | 刘畅, 卓建坤, 赵东明, 等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报, 2020, 40(1): 1-18, 369. |
LIU C, ZHUO J K, ZHAO D M, et al. A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids[J]. Proceedings of the CSEE, 2020, 40(1): 1-18, 369. | |
2 | 李欣然, 崔曦文, 黄际元, 等. 电池储能电源参与电网一次调频的自适应控制策略[J]. 电工技术学报, 2019, 34(18): 3897-3908. |
LI X R, CUI X W, HUANG J Y, et al. The self-adaption control strategy of energy storage batteries participating in the primary frequency regulation[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3897-3908. | |
3 | 张江丰, 苏烨, 孙坚栋, 等. 电网侧电化学储能电站AGC控制策略优化及试验分析[J]. 电力科学与技术学报, 2022, 37(2): 173-180. |
ZHANG J F, SU Y, SUN J D, et al. Optimization and test analysis of AGC control strategy for the grid-side electrochemical energy storage power station[J]. Journal of Electric Power Science and Technology, 2022, 37(2): 173-180. | |
4 | 邓霞, 孙威, 肖海伟. 储能电池参与一次调频的综合控制方法[J]. 高电压技术, 2018, 44(4): 1157-1165. |
DENG X, SUN W, XIAO H W. Integrated control strategy of battery energy storage system in primary frequency regulation[J]. High Voltage Engineering, 2018, 44(4): 1157-1165. | |
5 | 吴启帆, 宋新立, 张静冉, 等. 电池储能参与电网一次调频的自适应综合控制策略研究[J]. 电网技术, 2020, 44(10): 3829-3836. |
WU Q F, SONG X L, ZHANG J R, et al. Study on self-adaptation comprehensive strategy of battery energy storage in primary frequency regulation of power grid[J]. Power System Technology, 2020, 44(10): 3829-3836. | |
6 | 王育飞, 杨铭诚, 薛花, 等. 计及SOC的电池储能系统一次调频自适应综合控制策略[J]. 电力自动化设备, 2021, 41(10): 192-198, 219. |
WANG Y F, YANG M C, XUE H, et al. Self-adaptive integrated control strategy of battery energy storage system considering SOC for primary frequency regulation[J]. Electric Power Automation Equipment, 2021, 41(10): 192-198, 219. | |
7 | CHOI J Y, CHOI I S, AHN G H, et al. Advanced power sharing method to improve the energy efficiency of multiple battery energy storages system[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 1292-1300. |
8 | BAUMHÖFER T, BRÜHL M, ROTHGANG S, et al. Production caused variation in capacity aging trend and correlation to initial cell performance[J]. Journal of Power Sources, 2014, 247: 332-338. |
9 | 赵燚, 史学伟, 王莉斌, 等. 一种规模化电池储能电站功率分配策略[J]. 电网技术, 2022, 46(12): 5004-5012. |
ZHAO Y, SHI X W, WANG L B, et al. Power allocation strategy of large-scaled battery energy storage power station[J]. Power System Technology, 2022, 46(12): 5004-5012. | |
10 | 张嘉诚, 夏向阳, 邓子豪, 等. 储能电站安全参与电网一次调频的优化控制策略[J]. 中国电力, 2022, 55(2): 19-27. |
ZHANG J C, XIA X Y, DENG Z H, et al. Optimal control strategy for energy storage power station in primary frequency regulation of power grid[J]. Electric Power, 2022, 55(2): 19-27. | |
11 | 段双明, 于航, 刘聪, 等. 考虑储能单元健康状态与荷电状态一致性的BESS功率分配策略[J]. 电力系统自动化, 2023, 47(5): 65-73. |
DUAN S M, YU H, LIU C, et al. Power allocation strategy for battery energy storage system considering consistency of state of health and state of charge of energy storage units[J]. Automation of Electric Power Systems, 2023, 47(5): 65-73. | |
12 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电能质量 电力系统频率偏差: GB/T 15945—2008[S]. 北京: 中国标准出版社, 2008. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Power quality—Frequency deviation for power system: GB/T 15945—2008[S]. Beijing: Standards Press of China, 2008. | |
13 | 王宝财, 孙华东, 李文锋, 等. 考虑动态频率约束的电力系统最小惯量评估[J]. 中国电机工程学报, 2022, 42(1): 114-127. |
WANG B C, SUN H D, LI W F, et al. Minimum inertia estimation of power system considering dynamic frequency constraints[J]. Proceedings of the CSEE, 2022, 42(1): 114-127. | |
14 | 刘希闻. 电动汽车锂离子电池模型仿真与SOH研究[D]. 长春: 吉林大学, 2014. |
LIU X W. The estimating of lithium-ion battery model and SOH of electric vehicle[D]. Changchun: Jilin University, 2014. | |
15 | MA Z, HAO T Q, GAO F, et al. Enhanced SOH balancing method of MMC battery energy storage system with cell equalization capability[C]//2018 IEEE Applied Power Electronics Conference and Exposition (APEC). March 4-8, 2018, San Antonio, TX, USA. IEEE, 2018: 3591-3597. |
16 | LI N, GAO F, HAO T Q, et al. SOH balancing control method for the MMC battery energy storage system[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6581-6591. |
17 | 李楠, 高峰. 基于储能型模块化多电平系统的多时间尺度控制策略[J]. 电工技术学报, 2017, 32(17): 47-56. |
LI N, GAO F. Multi-time scale operational principle for battery integrated modular multilevel converter[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 47-56. | |
18 | 罗玲, 宋文吉, 林仕立, 等. 工作温度对磷酸铁锂电池SOC影响及研究进展[J]. 新能源进展, 2015, 3(1): 59-69. |
LUO L, SONG W J, LIN S L, et al. Research progress on effects of temperature on SOC and its estimation for LFP battery[J]. Advances in New and Renewable Energy, 2015, 3(1): 59-69. |
[1] | Ming LI, Jinyuan XIE, Muchu QIU, Liang SHAO, Qiang HUO. Research on balanced thermal management and energy saving of energy storage system based on planning curve [J]. Energy Storage Science and Technology, 2023, 12(8): 2585-2593. |
[2] | Yi WU, Yahong MENG, Yi ZHANG, Tie ZHOU, Ji LIU, Yewen WEI. Optimal equalization control of battery energy storage systems in power distribution station area [J]. Energy Storage Science and Technology, 2023, 12(5): 1655-1663. |
[3] | Xiangjun LI, Yibiao GUAN, Juan HU, Xiaokang LAI. Review of energy storage application in China from 2012 to 2022 [J]. Energy Storage Science and Technology, 2022, 11(9): 2702-2712. |
[4] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[5] | Yitao ZOU, Houju PEI, Hong SHI, Xinlong ZHU, Kaijie YANG, Junyi WANG. Design and optimization of the cooling duct system for the battery pack of a certain container energy storage [J]. Energy Storage Science and Technology, 2020, 9(6): 1864-1871. |
[6] | Zhaoxia YANG, Jingyuan LOU, Xuejing LI, Hanwen WANG, Kezhong WANG, Dongjiang YOU. Status and development of the zinc-nickel single flow battery [J]. Energy Storage Science and Technology, 2020, 9(6): 1678-1690. |
[7] | JIN Ruijiu, ZHANG Xiangfeng, WANG Zhijie. Adaptive control strategy for energy storage battery output with inconsistent performance [J]. Energy Storage Science and Technology, 2019, 8(6): 1253-1259. |
[8] | TONG Huan, ZHANG Bei. Development course and future direction of chemical power sources [J]. Energy Storage Science and Technology, 2018, 7(S1): 8-16. |
[9] | MI Gensuo, MU Yanting. A power allocation strategy of a hybrid energy storage system for a PV grid-connected system [J]. Energy Storage Science and Technology, 2018, 7(4): 726-731. |
[10] | WANG Hao1, YU Hailong1, JIN Yi2, WANG Suijun2, GUO Xiaojun3, XIAO Xiukun4, HUANG Xuejie1. A capacity fading model for a commercial Li4Ti5O12 battery [J]. Energy Storage Science and Technology, 2017, 6(3): 584-589. |
[11] | PENG Jiayue, ZU Chenxi, LI Hong. Fundamental scientific aspects of lithium batteries(I)--Thermodynamic calculations of theoretical energy densities of chemical energy storage systems [J]. Energy Storage Science and Technology, 2013, 2(1): 55-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||