Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (6): 1678-1690.doi: 10.19799/j.cnki.2095-4239.2020.0219
• Energy Storage Materials and Devices • Previous Articles Next Articles
Zhaoxia YANG(), Jingyuan LOU, Xuejing LI, Hanwen WANG, Kezhong WANG, Dongjiang YOU()
Received:
2020-06-18
Revised:
2020-07-06
Online:
2020-11-05
Published:
2020-10-28
Contact:
Dongjiang YOU
E-mail:17853533131@163.com;youdj@ytu.edu.cn
CLC Number:
Zhaoxia YANG, Jingyuan LOU, Xuejing LI, Hanwen WANG, Kezhong WANG, Dongjiang YOU. Status and development of the zinc-nickel single flow battery[J]. Energy Storage Science and Technology, 2020, 9(6): 1678-1690.
1 | HAZZA A, PLETCHER D, WILLS R. A novel flow battery—A lead acid battery based on an electrolyte with soluble lead (II) IV the influence of additives[J]. Journal of Power Sources, 2005, 149: 103-111. |
2 | CHENG J, ZHANG L, YANG Y S, et al. Preliminary study of single flow zinc-nickel battery[J]. Electrochemistry, 2007, 9(11): 2639-2642. |
3 | 陈勇. 面向建筑储能的锌镍单液流电池负极性能研究[D]. 镇江: 江苏科技大学, 2019. |
CHEN Yong. Study on the performance of anode single-flow zinc-nickel battery for building energy storage[D]. Zhenjiang: Jiangsu University of science and Technology, 2019. | |
4 | 金海浪. 单液流锌镍电池充电控制研究[D]. 南宁: 广西大学, 2019. |
JIN Hailang. Study on charge control of single fluid zinc-nickel battery[D]. Nanning: Guangxi University, 2019. | |
5 | WANG R Y, KIRK D W, ZHANG G X. Effects of deposition conditions on the morphology of zinc deposits from alkaline zincate solutions[J]. Cancer Research, 2006, 153(5): 193-229. |
6 | KHOR A C, LEUNG P K, MOHAMED M R, et al. Review of zinc-based hybrid flow batteries: From fundamentals to applications[J]. Materials Today, 2018, 8(1): 80-108. |
7 | ZHANG L, CHENG J, YANG Y S, et al. Study of zinc electrodes for single flow zinc/nickel battery application[J]. Journal of Power Sources, 2008, 179(1): 381-387. |
8 | ITO Y, NYCE M, PLIVELICH R, et al. Zinc morphology in zinc-nickel flow assisted batteries and impact on performance[J]. Journal of Power Sources, 2011, 196(4): 2340-2345. |
9 | CHENG Y H, XI X L, ZHANG H M, et al. Performance and potential problems of high power density zinc-nickel single flow batteries[J]. RSC Advances, 2015, 5(3): 1772. |
10 | ITO Y, WEI X, DESAI D, et al. An indicator of zinc morphology transition in flowing alkaline electrolyte[J]. Journal of Power Sources, 2012, 211: 119-128. |
11 | CHENG Y H, ZHANG H M, LAI Q Z, et al. A high power density single flow zinc-nickel battery with three-dimensional porous negative electrode[J]. Journal of Power Sources, 2013, 241: 196-202. |
12 | 陈勇, 姚寿广, 丁大培, 程杰. 镓离子对流动锌酸钾溶液中锌沉积/溶解的影响[J]. 电池, 2019, 49(4): 287-290. |
CHEN Yong, YAO Shouguang, DING Dapei, CHENG Jie. Effect of gallium ion on the deposition/dissolution in flowing potassium zincate solution[J]. Battery Bimonthly, 2019, 49(4): 287-290. | |
13 | 姚寿广, 陈勇, 程杰, 等. 锡酸钾对流动锌酸钾碱液中锌沉积/溶解的影响[J]. 高等学校化学学报, 2019, 40(3): 481-488. |
YAO Shouguang, CHEN Yong, CHENG Jie, et al. Effect of potassium stannate on the deposition/dissolution behavior of zinc anode for zinc-nickel single-flow battery[J]. Chemical Journal of Chinese Universities, 2019, 40(3): 481-488. | |
14 | WEN Y H, WANG T, CHENG J, et al. Lead ion and tetrabutylammonium bromide as inhibitors of the spongy growth of zinc in single flow zinc/nickel batteries[J]. Advanced Materials Research, 2011, 396/397/398: 18-23. |
15 | 王建明, 张莉, 张春, 等. Bi3+和四丁基溴化铵对碱性可充锌电极枝晶生长行为的影响[J]. 功能材料, 2001, 32(1): 45-47. |
WANG Jianming, ZHANG Li, ZHAGN Chun, et al. The influence of Bi3+and tetrabutylammonium bromide on the dendritic growth behavior of alkaline rechargeable zinc electrode[J]. Journal of Functional Materials, 2001, 32(1): 45-47. | |
16 | CHENG Y H, ZHANG N Y, XIANG Z H, et al. A long-life hybrid zinc flow battery achieved by dual redox couples at cathode[J]. Nano Energy, 2019, 63(9): 103822. |
17 | LTO Y, NYCE M, PLIVELICH R, et al. Gas evolution in a flow-assisted zinc-nickel oxide battery[J].Journal of Power Sources, 2011, 196: 6583-6587. |
18 | OSHITANI M, TAKAYAMA T, TAKASHIMA K, et al. A study on the swelling of a sintered nickel hydroxide electrode[J]. Journal of Applied Electrochemistry, 1986, 16(3): 403-412. |
19 | SNOOK G A, DUFFY N W, PANDOLFO A G. Evaluation of the effects of oxygen evolution on the capacity and cycle life of nickel hydroxide electrode materials[J]. Journal of Power Sources, 2007, 168(2): 513-521. |
20 | CHENG Y H, LAI Q Z, ZHANG H M, et al. Zinc-nickel single flow batteries with improved cycling stability by eliminating zinc accumulation on the negative electrode[J]. Electrochimica Acta, 2014, 145: 109-115. |
21 | LI X F, XIA T C, LI Z, et al. Mn-substituted nickel hydroxide prepared by ball milling and its electrochemical properties[J]. Journal of Alloys & Compounds, 2011, 509(32): 8244-8250. |
22 | CHENG Y W, ZHANG H B, VARANASI C V, et al. Improving the performance of cobalt-nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches[J]. Energy & Environmental Science, 2013, 6(11): 3314-3321. |
23 | CHENG Y H, ZHANG H M, LAI Q Z, et al. Performance gains in single flow zinc-nickel batteries through novel cell configuration[J]. Electrochimica Acta, 2013, 105: 618-621. |
24 | ARENAS L F, LOH A, TRUDGEON D P, et al. The characteristics and performance of hybrid redox flow batteries with zinc negative electrodes for energy storage[J]. Renewable & Sustainable Energy Reviews, 2018, 90(7): 992-1016. |
25 | 邢如月. 锌镍单液流电池正极性能研究[D]. 镇江: 江苏科技大学, 2019. |
XING Ruyue. Study on the positive electrode performance of single-flow zinc-nickel battery[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019. | |
26 | 严兴龙. 单液流锌镍电池模型参数辨识与SOC估计[D]. 南宁: 广西大学, 2018. |
YAN Xinglong. Single-fluid zinc-nickel battery model parameter identification and SOC estimation[D]. Nanning: Guangxi University, 2018. | |
27 | 姚寿广, 邢如月, 程杰, 肖民. 缓冲溶液法制备Al代α-Ni(OH)2的性能[J]. 电池, 2019, 49(3): 182-185. |
YAO Shouguang, XING Ruyue, CHENG Jie, XIAO Min. Performance of Al substituted α-Ni (OH)2 prepared by buffer solution method[J]. Battery Bimonthly, 2019, 49(3): 182-185. | |
28 | 姚寿广, 窦飞, 邢如月, 程杰, 肖民. 锌镍单液流电池正极Ni1-xMnx(OH)2倍率性能分析[J]. 无机化学学报, 2019, 35(8): 1403-1410. |
YAO Shouguang, DOU Fei, XING Ruyue, CHENG Jie, XIAO Min. Rate performance analysis of Ni1-xMnx(OH)2 as cathode material for zinc-nickel single flow battery[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(8): 1403-1410. | |
29 | YUAN Z Z, YIN Y B, XIE C X, et al. Advanced materials for zinc-based flow battery: Development and challenge[J]. Advanced Materials, 2019, 31(50): 1902025. |
30 | Xiao M, Wang Y C, Yao S G, et al. Analysis of internal reaction and mass transfer of zinc-nickel single flow battery[J]. Journal of Renewable & Sustainable Energy, 2016, 8(6): 064102. |
31 | 项宇, 刘春光, 苏建强, 等. 基于BP神经网络的动力电池SOC预测模型与优化[J]. 电源技术, 2013, 37(6): 963-965. |
XIANG Yu, LIU Chunguang, SU Jianqiang, et al. Forecast model of battery state of charge based on BP network and its optimization[J]. Chinese Journal of Power Sources, 2013, 37(6): 963-965. | |
32 | 姚寿广, 赵云辉, 赵倩, 程杰. 锌-镍单液流电池二维瞬态等温模型[J]. 计算机辅助工程, 2018, 27(Z1): 77-82. |
YAO Shouguang, ZHAO Yunhui, ZHAO Qian, CHENG Jie. 2D transient isothermal model of zinc-nickel single flow battery[J]. Computer Aided Engineering, 2018, 27(Z1): 77-82. | |
33 | 姚寿广, 赵倩, 赵云辉, 孙晓飞, 程杰. 锌镍单液流电池二维瞬态放电模型[J]. 中国舰船研究, 2019, 14(5): 28-35. |
YAO Shouguang, ZHAO Qian, ZHAO Yunhui, SUN Xiaofei, CHENG Jie. Two-dimensional transient discharge model of zinc-nickel single flow battery[J]. Chinese Journal of Ship Research, 2019, 14(5): 28-35. | |
34 | 赵云辉, 姚寿广, 周锐, 程杰. 锌镍单液流电池离子传质极化分析[J]. 电池, 2019, 49(6): 485-489. |
ZHAO Yunhui, YAO Shouguang, ZHOU Rui, CHENG Jie. Analysis of ion mass transfer polarization in nickel-zinc single flow battery[J]. Battery Bimonthly, 2019, 49(6): 485-489. | |
35 | YAO S G,WANG Y C,XIAO M,et al. The optimization and analysis for tab temperature of zinc-nickel single flow battery[C]//Proceedings of Asian Conference on Thermal Sciences, Korea, 2017. |
36 | 宋绍剑, 魏黄娇, 宋春宁. 基于AEKF的锌镍单液流电池SOC估计[J]. 电池, 2020, 50(1): 50-53. |
SONG Shaojian, WEI Huangjiao, SONG Chunning. SOC estimation of zinc-nickel single flow battery based on AEKF algorithm[J]. Battery Bimonthly, 2020, 50(1): 50-53. | |
37 | YAO S G, LIAO P, XIAO M, et al. Study on electrode potential of zinc nickel single-flow battery during charge[J]. Energies, 2017, 10(8): 1101-1110. |
38 | LIN X F, QIN J. Joint estimation of single flow zinc-nickle battery state and parameter using unscented Kalman Filter[C]//IEEE Power&Energy Society General Meeting, PES2015, Denver, USA, 2015. |
39 | LIN X F, GUO Y. A dynamic model of single flow zinc-nickle battery[C]//Chinese Automation Congress, IEEE, 2016. |
40 | Li Y X, WONG M C, IP W F, et al. Modeling of novel single flow zinc-nickel battery for energy storage system[C]//IEEE Conference on Industrial Electronics & Applications, IEEE, 2014. |
41 | 王江林, 徐学良, 丁青青, 等. 锌镍电池在储能技术领域中的应用及展望[J]. 储能科学与技术, 2019, 8(3): 506-511. |
WAGN Jianglin, XU Xuelliang, DING Qingqing, et al. Application and prospect of zinc-nickel battery in the field of energy storage technology[J]. Energy Storage Science and Technology, 2019, 8(3): 506-511. | |
42 | 刘卫. 锌镍单液流电池储能系统建模与性能分析[D]. 镇江: 江苏科技大学, 2018. |
LIU Wei. Modeling and performance analysis of zinc nickel single flow battery energy storage system[D]. Zhenjiang: Jiangsu University of Science and Technology, 2018. | |
43 | TURNEY D E, SHMUKLER M, GALLOWAY K, et al. Development and testing of an economic grid-scale flow-assisted zinc/nickel-hydroxide alkaline battery[J]. Journal of Power Sources, 2014, 264: 49-58. |
44 | 赵鹏程, 程杰, 徐艳, 等. 锌镍单液流电池工程化研究[C]//中国化学会第29届学术年会摘要集—第24分会:化学电源, 北京,2014. |
ZHAO Pengcheng, CHENG Jie, XU Yan, et al. Pilot scale development of Zn/Ni single flow redox battery[C]//Abstract Collection of the 29th Academic Annual Meeting of the Chinese Chemcial Society-Chapter 24: Chemcial Power, Beijing, 2014. |
[1] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[2] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[3] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[4] | Siqi SHI, Zhangwei TU, Xinxin ZOU, Shiyu SUN, Zhengwei YANG, Yue LIU. Applying data-driven machine learning to studying electrochemical energy storage materials [J]. Energy Storage Science and Technology, 2022, 11(3): 739-759. |
[5] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wei CHEN. International development trend analysis of next-generation electrochemical energy storage technology [J]. Energy Storage Science and Technology, 2022, 11(1): 89-97. |
[6] | Yitao ZOU, Houju PEI, Hong SHI, Xinlong ZHU, Kaijie YANG, Junyi WANG. Design and optimization of the cooling duct system for the battery pack of a certain container energy storage [J]. Energy Storage Science and Technology, 2020, 9(6): 1864-1871. |
[7] | Zheyi PEI, Gaofeng FAN, Xiaohui QIN. Demand analysis of large scale energy storage in China’s power system [J]. Energy Storage Science and Technology, 2020, 9(5): 1562-1565. |
[8] | LIU Qinghua, ZHANG Sai, JIANG Mingzhe, WANG Qiushi, XING Xueqi, YANG Hong, HUANG Feng, LEMMON P John, MIAO Ping. Study on the low-cost flow battery technologies for energy storage [J]. Energy Storage Science and Technology, 2019, 8(S1): 60-64. |
[9] | MENG Xiangfei, PANG Xiulan, CHONG Feng, HOU Shaopan, QI Bin. Application analysis and prospect of electrochemical energy storage in power grid [J]. Energy Storage Science and Technology, 2019, 8(S1): 38-42. |
[10] | JIN Ruijiu, ZHANG Xiangfeng, WANG Zhijie. Adaptive control strategy for energy storage battery output with inconsistent performance [J]. Energy Storage Science and Technology, 2019, 8(6): 1253-1259. |
[11] | TONG Huan, ZHANG Bei. Development course and future direction of chemical power sources [J]. Energy Storage Science and Technology, 2018, 7(S1): 8-16. |
[12] | WANG Jiahe, YANG Xiaowei. Progress reports and prospect of stretchable electrochemical energy storage devices [J]. Energy Storage Science and Technology, 2018, 7(2): 157-166. |
[13] | WANG Chao1, GUO Jipeng1,2, ZHONG Guobin1, XU Kaiqi1, SU Wei1, XIANG Hongfa2. Comparisons on the characteristics of electrochemical energy storage devices with the constant current testing and constant power testing [J]. Energy Storage Science and Technology, 2017, 6(6): 1313-. |
[14] | LI Zhaohui1, 2, ZHU Fangfang1, LI Haomiao1, HU Lin2, PENG Bo3, LI Jianying2, HE Yaling2, FANG Ying2, GUO Jiaojiao3, ZHANG Kun3, WANG Kangli1, JIANG Kai1. Research progresses of liquid metal batteries [J]. Energy Storage Science and Technology, 2017, 6(5): 981-989. |
[15] | WANG Hao1, YU Hailong1, JIN Yi2, WANG Suijun2, GUO Xiaojun3, XIAO Xiukun4, HUANG Xuejie1. A capacity fading model for a commercial Li4Ti5O12 battery [J]. Energy Storage Science and Technology, 2017, 6(3): 584-589. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||