1 |
MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4): 1-16.
|
2 |
LIU J, YUAN H, LIU H, et al. Unlocking the failure mechanism of solid state lithium metal batteries[J]. Advanced Energy Materials, 2022, 12(4): 2100748.
|
3 |
LIU J, XU R, YAN C, et al. In situ regulated solid electrolyte interphase via reactive separators for highly efficient lithium metal batteries[J]. Energy Storage Materials, 2020, 30: 27-33.
|
4 |
GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.
|
5 |
KOERVER R, ZHANG W B, DE BIASI L, et al. Chemo-mechanical expansion of lithium electrode materials‒On the route to mechanically optimized all-solid-state batteries[J]. Energy & Environmental Science, 2018, 11(8): 2142-2158.
|
6 |
FATHIANNASAB H, ZHU L K, CHEN Z W. Chemo-mechanical modeling of stress evolution in all-solid-state lithium-ion batteries using synchrotron transmission X-ray microscopy tomography[J]. Journal of Power Sources, 2021, 483: 229028.
|
7 |
ZHANG W B, SCHRÖDER D, ARLT T, et al. (Electro)chemical expansion during cycling: Monitoring the pressure changes in operating solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2017, 5(20): 9929-9936.
|
8 |
ZHANG L Q, YANG T T, DU C C, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope‒environmental transmission electron microscope set-up[J]. Nature Nanotechnology, 2020, 15(2): 94-98.
|
9 |
YUAN C H, GAO X, JIA Y K, et al. Coupled crack propagation and dendrite growth in solid electrolyte of all-solid-state battery[J]. Nano Energy, 2021, 86: 106057.
|
10 |
ZHU J P, ZHAO J, XIANG Y X, et al. Chemomechanical failure mechanism study in NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid-state lithium batteries[J]. Chemistry of Materials, 2020, 32(12): 4998-5008.
|
11 |
HORII M, CHRISTIANSON R J, MUTHA H, et al. Modeling the effect of electrolyte microstructure on conductivity and solid-state Li-ion battery performance[J]. Journal of Power Sources, 2022, 528: 231177.
|
12 |
BIRKHOLZ O, GAN Y X, KAMLAH M. Modeling the effective conductivity of the solid and the pore phase in granular materials using resistor networks[J]. Powder Technology, 2019, 351: 54-65.
|
13 |
DANILOV D, NIESSEN R A H, NOTTEN P H L. Modeling all-solid-state Li-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(3): A215.
|
14 |
KAZEMI N, DANILOV D L, HAVERKATE L, et al. Modeling of all-solid-state thin-film Li-ion batteries: Accuracy improvement[J]. Solid State Ionics, 2019, 334: 111-116.
|
15 |
RAIJMAKERS L H J, DANILOV D L, EICHEL R A, et al. An advanced all-solid-state Li-ion battery model[J]. Electrochimica Acta, 2020, 330: 135147.
|
16 |
FABRE S D, GUY-BOUYSSOU D, BOUILLON P, et al. Charge/discharge simulation of an all-solid-state thin-film battery using a one-dimensional model[J]. Journal of the Electrochemical Society, 2011, 159(2): A104-A115.
|
17 |
TIAN H K, QI Y. Simulation of the effect of contact area loss in all-solid-state Li-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(11): E3512-E3521.
|
18 |
SHAO Y Q, LIU H L, SHAO X D, et al. An all coupled electrochemical-mechanical model for all-solid-state Li-ion batteries considering the effect of contact area loss and compressive pressure[J]. Energy, 2022, 239: 121929.
|
19 |
PERSSON B N J. Contact mechanics for randomly rough surfaces[J]. Surface Science Reports, 2006, 61(4): 201-227.
|