Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (5): 1695-1704.doi: 10.19799/j.cnki.2095-4239.2023.0039
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Jialiang LIU(), Cuijing GUO, Huanling WANG()
Received:
2023-01-28
Revised:
2023-02-09
Online:
2023-05-05
Published:
2023-02-10
Contact:
Huanling WANG
E-mail:jialiang@epri.sgcc.com.cn;wanghuanling@epri.sgcc.com.cn
CLC Number:
Jialiang LIU, Cuijing GUO, Huanling WANG. Safety detection and verification of energy storage in lithium-ion battery based on fire fault tree model[J]. Energy Storage Science and Technology, 2023, 12(5): 1695-1704.
Table 1
Safety test items of energy storage battery"
基本事件组合 | 测试项目 | 测试对象 | 测试目的 | 仪器设备 |
---|---|---|---|---|
x1x4x7x8x12 | 过充电 | 储能电池单体、模块 | 模拟发生过充电的安全性 | 充放电设备 |
x1x4x5x6x8x12 | 过放电 | 储能电池单体、模块 | 模拟发生过放电的安全性 | 充放电设备 |
x1x4x5x6 x8x15 | 短路 | 储能电池单体、模块 | 模拟发生短路时的安全性 | 短路试验测试系统 |
x1x4x5x6x8x11x13x14 | 挤压 | 储能电池单体、模块 | 模拟外力挤压时的安全性 | 挤压测试系统 |
x1x4x5x6x8x13x14 | 震动 | 储能电池单体、模块 | 模拟不可抗拒因素或地质灾害等引起的安全性问题 | 震动测试系统 |
x1x4x5x6x8x11x13x14 | 冲击 | 储能电池单体、模块 | 模拟不可抗拒因素或地质灾害等引起的安全性问题 | 冲击测试系统 |
x1x4x5x6x8x11x13x14 | 跌落 | 储能电池单体、模块 | 模拟安装或维修时造成的自由跌落 | 跌落测试系统 |
x1 | 低气压 | 储能电池模块 | 模拟在高空低气压运输或运行时的安全特性 | 低气压箱 |
x1 | 盐雾 | 储能电池单体 | 模拟在海边高盐雾地区的使用情况 | 盐雾箱 |
x1x2x3x4x5x6x8x10x15 | 热失控 | 储能电池单体 | 模拟电池单体发生热失控时的安全性 | 加速量热仪 |
x1x2x3x4x5x6x8x10x15 | 热失控扩散 | 储能电池模块 | 模拟电池单体发生热失控时,触发电池模块系统内相邻或其他部位电池单体热失控的现象 | 加速量热仪 |
x1x2x3x4x5x6x8x10x15 | 灼燃试验 | 储能电池单体 | 模拟外部缆线及其他零件燃烧对单体电池的影响 | 灼燃测试平台 |
x1x2x3x4x5 x6x8x10x15 | 火烧试验 | 储能电池模块 | 模拟泄漏电解液燃烧或其他电池热失控对上层电池安全性的影响 | 火烧试验系统 |
Table 2
Safety item test related regulations of GB/T 36276—2018"
测试对象 | 测试项目 | 测试方法及要求 |
---|---|---|
电池单体 | 过充电 | 充电至电压达到充电终止电压的1.5倍或时间达到1 h,不应起火、爆炸。 |
过放电 | 放电至时间达到90 min或电压达到0 V,不应起火、爆炸。 | |
短路 | 正负极经外部短路10 min,不应起火、爆炸。 | |
挤压 | 挤压至电压达到0 V或变形量达到30%或挤压力达到(13±0.78) kN,不应起火、爆炸。 | |
跌落 | 正极或负极端子朝下从1.5 m高处自由跌落到水泥地面上1次,不应起火、爆炸。 | |
低气压 | 在低压环境中静置6 h,不应起火、爆炸、漏液。 | |
加热 | 以5 ℃的速率由环境温度升至(130±2) ℃并保持30 min,不应起火,爆炸。 | |
热失控 | 触发电池达到热失控的判定条件,不应起火、爆炸。 | |
电池模块 | 过充电 | 充电至任一电池单体电压达到充电终止电压的1.5倍或时间达到1 h,不应起火、爆炸。 |
过放电 | 放电至时间达到90 min或任一电池单体电压达到0 V,不应起火、爆炸。 | |
短路 | 正负极经外部短路10 min,不应起火、爆炸。 | |
挤压 | 挤压至变形量达到30%或挤压力达到(13±0.78) kN,不应起火、爆炸。 | |
跌落 | 正极或负极端子朝下从1.2 m高度处自由跌落到水泥地面上1次,不应起火、爆炸。 | |
盐雾与高温高湿 | 在海洋性气候条件下应满足盐雾性能要求,在喷雾-贮存循环条件下,不应起火、爆炸、漏液,外壳应无破裂现象; 在非海洋性气候条件下应满足高温高湿性能要求,在高温高湿贮存条件下,不应起火、爆炸、漏液,外壳应无破裂现象。 | |
热失控扩散 | 特定位置的电池单体触发达到热失控的判定条件,不应起火、爆炸,不应发生热失控扩散。 |
Table 4
Test information of module samples"
样品编号 | 产品所属系别 | 电池类型 | 电池能量 /Wh | 电池功率 /W | 连接方式 | 额定电压 /V | 额定容量 /Ah | 充电终止电压 /V | 放电终止电压 /V | 外形尺寸 (长×宽×高)/mm |
---|---|---|---|---|---|---|---|---|---|---|
1# | 磷酸铁锂 | 能量型 | 1920 | 860 | 5串1并 | 16 | 120 | 单体3.75 | 单体2.50 | 195×200×167 |
2# | 磷酸铁锂 | 能量型 | 640 | 640 | 9串 | 26.4 | 50 | 单体3.75 | 单体2.50 | 440×85×54 |
3# | 三元 | 功率型 | 38070 | 3807 | — | 141 | 271 | 单体4.20V | 单体2.75 | 1200×1000×870 |
4# | 三元 | 功率型 | 148 | 148 | 2并 | 3.7 | 40 | 单体4.20V | 单体2.75 | 230×165×25 |
5# | 磷酸铁锂 | 功率型 | 265 | 265 | 7串 | 23.1 | 11.5 | 单体3.65 | 单体2.50 | 192×63×47 |
Table 6
Results of electrical safety performance test"
试验名称 | 试验图形 | 试验结果 |
---|---|---|
短路试验 | (1) 磷酸铁锂电池单体短路 试验数据曲线 (2) 磷酸铁锂电池短路试验红外图 (3) 磷酸铁锂电池单体试验后图片 | 100 Ah磷酸铁锂电池单体短路过程中电池均只发生微鼓胀,安全性表现较好; 磷酸铁锂电池模块经外部短路试验后,极耳处在短时间内熔断,电池未发生起火、爆炸、泄露等现象 |
试验名称 | 试验图形 | 试验结果 |
(4) 磷酸铁锂电池模块短路试验后 | ||
电池单体过充试验 | (5) 三元锂电池单体过充 试验数据曲线 (6) 三元锂电池单体试验后图片 | 三元锂电池过充至6.3 V后,均发生一系列热失控反应,电池表面温度急剧升高,导致软包外壳被高压气体冲开,电池内部迅速与氧气接触,进而产生着火现象 |
(7) 磷酸铁锂电池单体过充试验后 | 磷酸铁锂电池过充至5.475 V后,电池未发生漏液、冒烟、起火及爆炸现象 | |
过放试验 | (8) 磷酸铁锂电池试验后图片 | 磷酸铁锂电池试验验后电池照片,显示过放电前后电池无明显变化 |
Table 8
Environmental safety test"
试验名称 | 试验图形 | 试验结果 |
---|---|---|
盐雾试验 | (1) 三元电池模块盐雾试验后 | 试验结束后样品外壳的焊接处略有锈迹 |
(2) 磷酸铁锂电池模块盐雾试验后 | 未发生起火、爆炸、漏液,外壳无破裂现象 | |
温度冲击试验 | (3) 磷酸铁锂电池在温度冲击试验后 | 样品出现膨胀现象 |
高空低 气压试验 | (4) 磷酸铁锂电池在高空低气压试验后 | 未发生鼓胀、漏液、冒烟、起火、爆炸等现象 |
绝热温升试验 | (5) 磷酸铁锂电池1#样品在 不同温度下温升速率曲线 (6) 磷酸铁锂电池在绝热温升试验后 | 试验后样品鼓包 |
热失控 试验 | (7) 磷酸铁锂在热失控试验后 | 试验后样品鼓胀,未发生起火爆炸等现象 |
热失控 扩散试验 | (8) 磷酸铁锂电池模块的热失控扩展试验曲线 | 1#电池试验开始不久就发生了热失控,2#、3#、4#和5#电池经过10000 s以上的加热后,仅温度有一定程度的上升,并没有发生热失控 |
灼燃试验 | (9) 钛酸锂电池本体部位灼燃试验图片(700 ℃) | 灼热丝试验温度依次为150 ℃、300 ℃、500 ℃、600 ℃、700 ℃,全程电池本体温升并不明显,灼热丝温度为700 ℃时,电池本体温度仅为145.4 ℃,且灼热丝接触位置仅出现轻微灼燃损伤 |
1 | 黎冲, 王成辉, 王高, 等. 规模化储能技术发展分析与思考[J]. 电气时代, 2021(9): 22-28. |
LI C, WANG C H, WANG G, et al. Analysis and thinking on the development of large-scale energy storage technology[J]. Electric Age, 2021(9): 22-28. | |
2 | 郑帅, 鲁浩, 李文博, 等. 大规模储能在山东电力系统发展研究[J]. 电工技术, 2020(24): 35-37, 40. |
ZHENG S, LU H, LI W B, et al. Research on the development of large-scale energy storage in Shandong power system[J]. Electric Engineering, 2020(24): 35-37, 40. | |
3 | 李建林, 惠东, 靳文涛. 大规模储能技术[J]. 电气时代, 2018(12): 96. |
LI J L, HUI D, JIN W T. Large-scale energy storage technology[J]. Electric Age, 2018(12): 96. | |
4 | 孙秋娟, 冯丽华, 王青松, 等. 脉冲放电过程中锂离子电池的热行为分析[J]. 工程热物理学报, 2017, 38(9): 2038-2043. |
SUN Q J, FENG L H, WANG Q S, et al. The thermal response of lithium titanate battery during pulse discharge[J]. Journal of Engineering Thermophysics, 2017, 38(9): 2038-2043. | |
5 | 赵春朋, 王青松, 余彦. 密闭空间中锂离子电池的热爆炸危险性[J]. 储能科学与技术, 2018, 7(3): 424-430. |
ZHAO C P, WANG Q S, YU Y. Thermal explosion hazards of lithium-ion batteries in hermetic space[J]. Energy Storage Science and Technology, 2018, 7(3): 424-430. | |
6 | 谢潇怡, 王莉, 何向明, 等. 锂离子动力电池安全性问题影响因素[J]. 储能科学与技术, 2017, 6(1): 43-51. |
XIE X Y, WANG L, HE X M, et al. The safety influencing factors of lithium batteries[J]. Energy Storage Science and Technology, 2017, 6(1): 43-51. | |
7 | 黄沛丰, 刘家亮, 金翼, 等. 基于火三角模型的锂离子电池火灾事故树分析[J]. 安全与环境学报, 2018, 18(1): 66-69. |
HUANG P F, LIU J L, JIN Y, et al. Fault tree analysis method for lithium ion battery failure mode based on the fire triangle model[J]. Journal of Safety and Environment, 2018, 18(1): 66-69. | |
8 | 陈志斌, 王志远, 邵丹, 等. 动力锂离子电池安全性能检测标准化综述[J]. 电池, 2022, 52(6): 689-693. |
CHEN Z B, WANG Z Y, SHAO D, et al. Summary of standardization of safety performance testing for power lithium-ion batteries[J]. Battery Bimonthly, 2022, 52(6): 689-693. | |
9 | 王志远, 陈志斌, 邵丹, 等. 动力电池安全性能检测与评价标准体系框架构建[J]. 中国标准化, 2022(15): 62-66. |
WANG Z Y, CHEN Z B, SHAO D, et al. Construction of standard system framework for safety performance testing and evaluation of power batteries[J]. China Standardization, 2022(15): 62-66. | |
10 | 王彩娟, 宋杨, 秦剑峰, 等. 锂离子电池标准IEC 62619: 2017和GB/T 36276—2018解析[J]. 电池, 2020, 50(5): 483-487. |
WANG C J, SONG Y, QIN J F, et al. Analysis of the standards IEC 62619: 2017, GB/T 36276—2018 for Li-ion battery[J]. Battery Bimonthly, 2020, 50(5): 483-487. | |
11 | EUNJI K, JUNHYEONG K, HO H S, et al. Detailed modeling investigation of thermal runaway pathways of a lithium iron phosphate battery[J]. International Journal of Energy Research, 2021, 46(2): 1146-1167. |
12 | HUANG P F, YAO C X, MAO B B, et al. The critical characteristics and transition process of lithium-ion battery thermal runaway[J]. Energy, 2020, 213: 119082. |
13 | LIU P J, LI Y Q, MAO B B, et al. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: 116949. |
14 | LIU P J, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of lithium iron phosphate battery induced by over heating[J]. Journal of Energy Storage, 2020, 31: doi: 10.1016/j.est.2020.101714. |
15 | 胡洁, 方书昊, 齐涵, 等. 事故树-风险矩阵评估高校实验室火灾风险[J]. 安全, 2019, 40(5): 24-29. |
HU J, FANG S H, QI H, et al. Fire risk evaluation of the laboratory in colleges and universities based on fault tree analysis and risk matrix[J]. Safety & Security, 2019, 40(5): 24-29. | |
16 | 魏长旺. 基于事故树的电镀厂房火灾危险性分析[J]. 广东化工, 2021, 48(4): 250-251. |
WEI C W. Fire risk analysis of electroplating factory based on fault tree[J]. Guangdong Chemical Industry, 2021, 48(4): 250-251. | |
17 | 张霞, 朱杰. 基于事故树和模糊层次分析法的飞机火灾事故分析[J]. 安全, 2020, 41(4): 39-43. |
ZHANG X, ZHU J. Analysis on fire accident of airplane based on fault tree and fuzzy analytical hierarchy process[J]. Safety & Security, 2020, 41(4): 39-43. | |
18 | 许洁, 金静, 贾南, 等. 基于事故树与层次分析法的大型综合类商场火灾风险研究[J]. 武警学院学报, 2019, 35(8): 39-44. |
XU J, JIN J, JIA N, et al. Fire risk analysis on shopping complexes based on fault tree analysis and analytic hierarchy process[J]. Journal of the Armed Police Academy, 2019, 35(8): 39-44. | |
19 | 彭飞, 石娜丽. 基于事故树对某高校学生宿舍进行火灾隐患分析[J]. 吉林化工学院学报, 2019, 36(1): 43-47. |
PENG F, SHI N L. Analysis of fire hazard in A university dormitory based on fault tree analysis[J]. Journal of Jilin Institute of Chemical Technology, 2019, 36(1): 43-47. |
[1] | Yi WU, Yahong MENG, Yi ZHANG, Tie ZHOU, Ji LIU, Yewen WEI. Optimal equalization control of battery energy storage systems in power distribution station area [J]. Energy Storage Science and Technology, 2023, 12(5): 1655-1663. |
[2] | Huiqun YU, Zhehao HU, Daogang PENG, Haoyi SUN. Key technologies for retired power battery recovery and its cascade utilization in energy storage systems [J]. Energy Storage Science and Technology, 2023, 12(5): 1675-1685. |
[3] | Xinyu LI, Xuebing HAN, Languang LU, Jianqiu LI, Minggao OUYANG. Optimization of an impedance model for power Li-ion batteries based on a large multiplier current pulse [J]. Energy Storage Science and Technology, 2023, 12(5): 1686-1694. |
[4] | Bin LI, Jilei YE, Yu ZHANG, Shanshan SHI, Haojing WANG, Lili LIU, Mingzhe LI. Microgrid-coordinated control strategy with distributed new energy and electro-mechanical hybrid energy storage [J]. Energy Storage Science and Technology, 2023, 12(5): 1510-1515. |
[5] | Yifan HAO, Xiayu ZHU, Jing WANG, Jingyi QIU, Hai MING, Zhenhua FANG. Analysis of battery nondestructive testing and monitoring methods [J]. Energy Storage Science and Technology, 2023, 12(5): 1713-1737. |
[6] | Bing LI, Hong ZHOU, Liping WANG, Han FENG. Analysis of the talent structure characteristics and high-level basic research themes in global energy storage [J]. Energy Storage Science and Technology, 2023, 12(5): 1738-1746. |
[7] | Haisheng CHEN, Hong LI, Yujie XU, Man CHEN, Liang WANG, Xingjian DAI, Dehou XU, Xisheng TANG, Xianfeng LI, Yongsheng HU, Yanwei MA, Yu LIU, Wei SU, Qingsong WANG, Jun CHEN, Ping ZHUO, Liye XIAO, Xuezhi ZHOU, Ziping FENG, Kai JIANG, Haijun YU, Yongbing TANG, Renjie CHEN, Yatao LIU, Yuxin ZHANG, Xipeng LIN, Huan GUO, Han ZHANG, Changkun ZHANG, Dongxu HU, Xiaohui RONG, Xiong ZHANG, Kaiqiang JIN, Lihua JIANG, Yumin PENG, Shiqi LIU, Yilin ZHU, Xing WANG, Xin ZHOU, Xuewu OU, Quanquan PANG, Zhenhua YU, Wei LIU, Fen YUE, Zhen LI, Zhen SONG, Zhifeng WANG, Wenji SONG, Haibo LIN, Jiecai LI, Bin YI, Fujun LI, Xinhui PAN, Li LI, Yiming MA, Huang LI. Research progress on energy storage technologies of China in 2022 [J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552. |
[8] | Xiaoyu GUO, Hao YU, Xin ZHENG, Yujia LIU, Yuanjie ZUO, Miaomiao ZHANG. Optimal configuration of liquid flow battery energy storage in photovoltaic system [J]. Energy Storage Science and Technology, 2023, 12(4): 1158-1167. |
[9] | Haishan LIU, Xianlong XU, Shuzhou WEI, Yalei PANG, Feng HONG. Flywheel energy storage participates in frequency modulation power division control based on improving power grid assessment index of north China power grid [J]. Energy Storage Science and Technology, 2023, 12(4): 1176-1184. |
[10] | Wenzhe DONG, Sile YANG, Zongyou LIANG, Yinyu CHEN. Research on optimal operation of traction power supply system with integrated hybrid energy storage and RPC [J]. Energy Storage Science and Technology, 2023, 12(4): 1185-1193. |
[11] | Hongxin WU, Aikui LI, Cun DONG, Shumin SUN, Guanglei LI, Shibo WANG. Control strategy for wind power fluctuation stabilization with energy storage and frequency modulation reserve [J]. Energy Storage Science and Technology, 2023, 12(4): 1194-1203. |
[12] | Liyu ZHAO, Huanwu SUN, Shichuang LIU, Zhiyuan YAN. Energy consumption comparison and optimization of auxiliary power-battery heating system of heavy truck [J]. Energy Storage Science and Technology, 2023, 12(4): 1139-1147. |
[13] | Qi ZHANG, Chongyang LIU, Jun SONG, Xueling ZHANG, Yinlei LI, Yanfang LI. Progress in synthesis and application of microcapsule phase-change materials [J]. Energy Storage Science and Technology, 2023, 12(4): 1110-1130. |
[14] | Weiling ZHANG, Han GU, Chao ZHANG, Ang GE, Yuanxu YING. Technical economic characteristics and development trends of compressed air energy storage [J]. Energy Storage Science and Technology, 2023, 12(4): 1295-1301. |
[15] | Weibin HUANG, Biao ZHANG, Jincheng FAN, Wei YANG, Hanbo ZOU, Shengzhou CHEN. Preparation and modification of ZIF-8 composite PEO based solid electrolyte [J]. Energy Storage Science and Technology, 2023, 12(4): 1083-1092. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||