Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (5): 1705-1712.doi: 10.19799/j.cnki.2095-4239.2022.0721
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Linze LI1(), Xiangwen ZHANG1,2()
Received:
2022-12-05
Revised:
2023-01-03
Online:
2023-05-05
Published:
2023-05-29
Contact:
Xiangwen ZHANG
E-mail:1023368484@qq.com;zxw@guet.edu.cn
CLC Number:
Linze LI, Xiangwen ZHANG. SOH estimation for lithium-ion batteries based on combination of frequency impedance characteristics[J]. Energy Storage Science and Technology, 2023, 12(5): 1705-1712.
1 | DENG Y W, YING H J, E J, et al. Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries[J]. Energy, 2019, 176: 91-102. |
2 | 梁新成, 张勉, 黄国钧. 基于BMS的锂离子电池建模方法综述[J]. 储能科学与技术, 2020, 9(6): 1933-1939. |
LIANG X C, ZHANG M, HUANG G J. Review on lithium-ion battery modeling methods based on BMS[J]. Energy Storage Science and Technology, 2020, 9(6): 1933-1939. | |
3 | HOSSAIN LIPU M S, HANNAN M A, HUSSAIN A, et al. A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations[J]. Journal of Cleaner Production, 2018, 205: 115-133. |
4 | 李旭东, 张向文. 基于主成分分析与WOA-Elman的锂离子电池SOH估计[J]. 储能科学与技术, 2022, 11(12): 4010-4021. |
LI X D, ZHANG X W. State of health estimation method for lithium-ion batteries based on principal component analysis and whale optimization algorithm-Elman model[J]. Energy Storage Science and Technology, 2022, 11(12): 4010-4021. | |
5 | LI X Y, WANG Z P, YAN J Y. Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression[J]. Journal of Power Sources, 2019, 421: 56-67. |
6 | GALEOTTI M, CINÀ L, GIAMMANCO C, et al. Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy[J]. Energy, 2015, 89: 678-686. |
7 | YANG J F, XIA B, HUANG W X, et al. Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis[J]. Applied Energy, 2018, 212: 1589-1600. |
8 | ZHANG S Z, ZHAI B Y, GUO X, et al. Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks[J]. Journal of Energy Storage, 2019, 26: doi: 10.1016/j.est.2019.100951. |
9 | 张滔. 基于时域阻抗谱测量的锂离子电池性能评估[D]. 哈尔滨: 哈尔滨工业大学. |
ZHANG T. Performance evaluation of lithium ion battery based on time domain impedance spectrum measurement[D]. Harbin: Harbin Institute of Technology. | |
10 | 李凌峰, 宫明辉, 乌江. 采用多模模型的锂离子电池荷电状态联合估计算法[J]. 西安交通大学学报, 2021, 55(1): 78-85. |
LI L F, GONG M H, WU J. Joint estimation algorithm for state of charge of Li-ion battery with multi-mode model[J]. Journal of Xi'an Jiaotong University, 2021, 55(1): 78-85. | |
11 | WANG X Y, WEI X Z, DAI H F. Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering different temperature and state of charge[J]. Journal of Energy Storage, 2019, 21: 618-631. |
12 | RAIJMAKERS L H J, DANILOV D L, VAN LAMMEREN J P M, et al. Sensorless battery temperature measurements based on electrochemical impedance spectroscopy[J]. Journal of Power Sources, 2014, 247: 539-544. |
13 | ZHANG Y W, TANG Q C, ZHANG Y, et al. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning[J]. Nature Communications, 2020, 11(1): 1-6. |
14 | GUHA A, PATRA A. State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models[J]. IEEE Transactions on Transportation Electrification, 2018, 4(1): 135-146. |
15 | 骆凡, 黄海宏, 王海欣. 基于电化学阻抗谱的退役动力电池荷电状态和健康状态快速预测[J]. 仪器仪表学报, 2021, 41(9): 172-180. |
LUO F, HUANG H H, WANG H X. Rapid prediction of the state of charge and state of health of decommissioned power batteries based on electrochemical impedance spectroscopy[J]. Chinese Journal of Scientific Instrument, 2021, 41(9): 172-180. | |
16 | DE VRIES H, NGUYEN T T, OP HET VELD B. Increasing the cycle life of lithium ion cells by partial state of charge cycling[J]. Microelectronics Reliability, 2015, 55(11): 2247-2253. |
17 | IURILLI P, BRIVIO C, WOOD V. On the use of electrochemical impedance spectroscopy to characterize and model the aging phenomena of lithium-ion batteries: A critical review[J]. Journal of Power Sources, 2021, 505: doi: 10.1016/j.jpowsour.2021.229860. |
18 | KŘIVÍK P, VACULÍK S, BAČA P, et al. Determination of state of charge of lead-acid battery by EIS[J]. Journal of Energy Storage, 2019, 21: 581-585. |
19 | LOVE C T, VIRJI M B V, ROCHELEAU R E, et al. State-of-health monitoring of 18650 4S packs with a single-point impedance diagnostic[J]. Journal of Power Sources, 2014, 266: 512-519. |
20 | KŘIVÍK P, BAČA P, KAZELLE J. Effect of ageing on the impedance of the lead-acid battery[J]. Journal of Energy Storage, 2021, 36: doi: 10.1016/j.est.2021.102382. |
21 | 董明, 范文杰, 刘王泽宇, 等. 基于特征频率阻抗的锂离子电池健康状态评估[J]. 中国电机工程学报, 2022, 42(24): 9094-9104. |
DONG M, FAN W J, WANGZEYU L, et al. Health assessment of lithium-ion batteries based on characteristic frequency impedance[J]. Proceedings of the Chinese Society for Electrical Engineering, 2022, 42(24): 9094-9104. | |
22 | 刘家豪, 张宏伟, 袁永军. 基于LSTM和EIS的锂电池健康状态估计[J]. 传感器与微系统, 2021, 40(12): 59-61, 65. |
LIU J H, ZHANG H W, YUAN Y J. Health state estimation of lithium battery based on LSTM and EIS[J]. Transducer and Microsystem Technologies, 2021, 40(12): 59-61, 65. |
[1] | Luhao HAN, Ziyang WANG, Xiaolong HE, Chunshan HE, Xiaolong SHI, Bin YAO. The effect of water mist strategies on thermal runaway fire suppression of large-capacity NCM lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(5): 1664-1674. |
[2] | Jintao LI, Yue MU, Jing WANG, Jingyi QIU, Hai MING. Investigation of the structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1636-1654. |
[3] | Yongli YI, Ran YU, Wu LI, Yi JIN, Zheren DAI. Preparation of Mo, Al-doped Li7La3Zr2O12-based composite solid electrolyte and performance of all-solid-state batterys [J]. Energy Storage Science and Technology, 2023, 12(5): 1490-1499. |
[4] | Jinhua SONG, Xinghao ZHANG, Zhenhe FENG, Guangyu CHENG, Honghui GU, Haitao GU, Ke WANG. Degradation mechanisms of SiO x -C composite anode based on in situ reference electrode [J]. Energy Storage Science and Technology, 2023, 12(4): 1059-1065. |
[5] | Liyue HU, Xingyan YAO. Thermal runaway of lithium-ion batteries based on orthogonal test [J]. Energy Storage Science and Technology, 2023, 12(4): 1268-1277. |
[6] | Pengkai WANG, Xinyan ZHANG, Guanghao ZHANG. Remaining useful life prediction of lithium-ion batteries based on ResNet-Bi-LSTM-Attention model [J]. Energy Storage Science and Technology, 2023, 12(4): 1215-1222. |
[7] | Zhi ZHAI, Fujin WANG, Yi DI, Peiyu MA, Zhibin ZHAO, Xuefeng CHEN. Hierarchical alignment transfer learning for lithium-ion battery capacity estimation [J]. Energy Storage Science and Technology, 2023, 12(4): 1223-1233. |
[8] | Ni YANG, Yuefeng SU, Lian WANG, Ning LI, Liang MA, Chen ZHU. Research progress of focused ion beam microscopy in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1283-1294. |
[9] | Xueli CHENG, Weifu ZHANG, Chengcheng LUO, Xiaoya YUAN. Preparation of three-dimensional graphene/Fe3O4 composites by one-step hydrothermal method and their lithium storage performance [J]. Energy Storage Science and Technology, 2023, 12(4): 1066-1074. |
[10] | Yiming YAO, Weiling LUAN, Ying CHEN, Min SUN. Recent progress in aging degradation of lithium-ion battery materials via in-situ optical microscopy [J]. Energy Storage Science and Technology, 2023, 12(3): 777-791. |
[11] | Kuijie LI, Ping LOU, Minyuan GUAN, Jinlong MO, Weixin ZHANG, Yuancheng CAO, Shijie CHENG. A review of multi-dimensional signal evolution and coupling mechanism of lithium-ion battery thermal runaway [J]. Energy Storage Science and Technology, 2023, 12(3): 899-912. |
[12] | Xinhao ZHAO, Liang XU. Improved firefly optimization algorithm to optimize back propagation neural network for state of health estimation of power lithium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(3): 934-940. |
[13] | Fangfang WANG, Xiangming FENG, Guangjin ZHAO, Dawei XIA, Yuxia HU, Weihua CHEN. Identification of retired power lithium-ion batteries of chemical systems by electrochemical impedance spectroscopy [J]. Energy Storage Science and Technology, 2023, 12(2): 609-614. |
[14] | Fan YANG, Jiarui HE, Ming LU, Lingxia LU, Miao YU. SOC estimation of lithium-ion batteries based on BP-UKF algorithm [J]. Energy Storage Science and Technology, 2023, 12(2): 552-559. |
[15] | Ruijie WANG, Zhouli HUI, Ming YANG. Gaussian process regression based on indirect health indicators for SOH estimation of lithium battery [J]. Energy Storage Science and Technology, 2023, 12(2): 560-569. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||